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Abstract

In this paper, a specified number of actuators are
selected from a given set of admissible actuators. The
selected set of actuators is likely to use minimum
control energy while required output variance constraints
‘are guaranteed to be satisfied. The actuator selection
procedure is an iterative algorithm composed of two
parts: an output varjance constrained control and an
input variance constrained control algorithm, The idea
behind this algorithm is that the solution to the first
control problem provides the necessary weighting matrix
in the objective function of the second optimization
problem, and the sensitivity information from the second
problem is utilized to delete one actuator. For variance
constrained control problems, by considering a dual
version of each control problem an efficient algorithm is
provided, whose convergence properties turn out to be
better than an existing algorithm, Numerical examples
with a simple beam are given for both the input/output
variance constrained control problem and the actuator
selection problem.

1. Introduction

A wost fundamental and important problem in the
synthesis of a contro! system is the selection of the
actuators and/or sensors (their number, type, size and
location). The cost, reliability and weight of the
input/output  devices limit ~ their characteristics.
Superfluous  sensors/actuators can  increase  plant
disturbances or model uncertainty without contributing
much to the system performance, Furthermore, an
unfavorable selection resulting in a plant poorly
condi tioned in a sense of input-to-output
characteristics, may lead to controller design
difficulties and hence, simplistic design methods have to
be replaced by more sophisticated ones so that
unnecessarily excessive effort must be made. The size
(i.e., dynamic range) of the devices must also be taken
into account during the selection process because any
physical device has its own limitation,

It is desirable to have a computationally less
demanding selection algorithm. In general, a good choice
of actuators and sensors can be made when a closed-loop
{rather than open-loop) system performance is considered
as a selection criterion, So the selection algorithm must
be integrated with the controller design process, In this
paper, the actuator selection problem will be considered
for output variance constrained control problen.

Consider a plant described by

Xo = ApXp + BoB(u+w,) + Dyw,, (L1)

y = Coxp

where X,€ER ™, u€ER™ and yER ™ are the vectors of

plant state, input and output. The diagonal wmatrix B is
to be selected such that

B = diag[pi,pz,--,B4], (12a)

$1=0arlfori=1,2--,n4 (1.2b)

where n, is the number of all available actuators. Bj=1
means that the i-th actuator is selected for a controller
design. The colums of By matrix are dictated by the
locations and types of available actuators. The actuator
noise W, and the plant disturbance w, are assumed to be
zero mean Gaussian white noise processes with intensity
of wa and W, , respectively. The problem under
consideration may be stated as follows:

Optimal Actuator Selection (0AS) Problem

Given a positive definite input weighting matrix R,
and upper bounds required of output variances oz, find
the N actuator locations (or location index matrix B) out
of nu(>N) available locations, and the corresponding
control law u such that

Min
(5) E= (BT R, (Bu) , (13)

subject to Eayf, i=1,2,--,n,

where Eo & EEE is the expectation operator and B is
defined by (1.2).

Notice that when B; are fixed for all i, the above OAS

Problem is reduced to the well-known Qutput Variance
Constrained (OVC) control problem [1~3},

This paper is organized as follows: In the next
section, the input/output variance constrained control
problem will be solved by a dual approach. An actuator
selection algorithm is proposed in section 3 by
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successively iterating the output variance constrained
control and input variance constrained control, Numerical
examples and concluding remarks are given in section 4,

2. A Dual Approach to Input/Output Variance
Constrained Control Problem

Consider the following stabilizable and detectable
plant

Xo= ApXp+Bou+Dpwy @
y = CoXp
Note that (2.1) is obtained by setting p=1I,, and w,=0

in (1.1). The control problem under consideration is
following:

Input/Output Variance Constrained (10VC) Control

Problem

Find a stabilizing linear control law u attaining a
minimun value of a quadratic objective function subject
to the inequality constraint on each input and output
variance for the given system (2.1), i.e.,

‘ng J(0) * Ex(yTQoy+u"Rou)

(2.2a)
2.8 i= 1...
subject to (E“'y;“‘z' L= Lo, "’}
Eouj<yj, j = 1,--+, ny
where
@ = ( ulu = stabilizing control law } , (2.2b)

Q, is a given positive semi-definite output weighting
matrix, Ro a given positive definite input weighting
matrix, ¢ the given upper bound of the i-th output

variance, u? the given upper bound of the j-th input
variance.

fie shall confine ourself only to state feedback and
full-order dynamic feedback control laws, A similar
control problem was considered in [4]. When only the
output variance constraints are imposed with Qo =0, the
problem is called Output Variance Constrained (OVC)
control problem and has been extensively investigated by
several authors [1-3, 5]. A companion problem called the
Input Variance Constrained (IVC) control problem is also
considered with Ro=0 and only the input variance
constraints [1,6].

We shall provide a dual version of IOVC control
problem (2.2), whose solution is also a solution to the
above problem. Hence a sufficiency is guaranteed, We
first consider the following problem intimately related
to the problem (2.2):

Lagrangian Problem
. 1
Tep Lwan & Jw + 2 ailEa v} - ob) +
i};l ril€e uf - uh (2.3a)

where the parameters q and r are fixed vectors whose
elements are nonnegative,i.e.,

a="la,a ~,a,]", @20,

i=1 - ny, (2.3b)
r=1[r,ory ~,rad7, 120,
j=1 - ,n04. (23c)

Then a dual version of the IOVC control problem is given
as follows:

A Dual Version of I0VC Control Problem

(q,lrr;aé y hlan = g’é"o L(u,qr) (2.4a)

where
¥2{((gr)l ¢g20,1r20,

and ITE“‘Q L(u,qr) exists ) - (2.4b)

It can be shown that h(qr) is differentiable at some
(q,r) €Y, and the partial derivative is given by

3

3 = Ew ¥i’ - of, (2.52)
a2
E]

ar|
%l an=(gn
| < Eeu - oW (250)

{ar)=(am)

where ; is the output vector when the control law is a,
which is the solution to the Lagrangian problem (2.3)

with  (qr) = (qr). More details ahout underlining
derivation may be found in [7].

We now provide a new algorithm to solve the IOVC
control problem,

10VC Algorithm

Enter A, By, Cp, Dy, Wy, Qo 2 0, Ro >

a2 201?20

Stepl Setk = 0.

Step 2 Solve the Lagrangian problem (2.3) with

Qa) = Qo + diag[q“] and
R(r) & R, + diag[r*1.

Step 3 Calculate the value of the dual objective function
h(gqr) in (24) and, if necessary, the derivatives

h dh
g and 3 by (25).

Step 4 Set k = k + 1 and utilize the information obtained
in Step 3 to updateqm and r© as follows :

(ko1 [
: ,) = (q ) * ©
= as
( plen r®
where a is the step size and s is the search
direction.

Step 5 Repeat Steps 2 to 4 until convergence.
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(k)

Notice that in Step 4, a and s should be calculated

so that q"““ 20and r%Y 2 0 must be satisfied.
They may be obtained by any existing algorithm [8] under
the constraints q*" 2 0 and r*" > 0,

3. An Actuator Selection Algorithm by
OVC/1VC Algorithm

In this section the close relationship between
output variance constrained control problem and input
variance control problem will be utilized to solve the
optimal actuator selection problem posed in section 1,
which is a nonlinear (0,1) integer programming problem,
Our method is an iterative algorithm instead of directly
solving the integer program which requires extremely
intensive computation even for moderately-sized problems,

The following theorem provides the
between OVC and IVC control problems:

Theorem [7]

relationship

I. Let gq solve the dual version of the QVC Control
Problem and let u be the solution to its Lagrangian

Problem with q = . Suppose that for the IVC

Control Problem we choose

Qo = disg(@) and 1 = Ewup, (&3]
i=14,2 -~ ,n ,

then u ls also a sclution to the IVC Control

Problem and the corresponding multipliers are the
diagonal elements of R, given in the OVC control
problen,

[I. Let r solve the dual version of the IVC Control

Probelm and let u be the solution to its Lagrangian

Problem with r = r. Suppose that for ‘the OVC

Control Problem we choose

R, = diag(’) and o = Ee §i°, (32)
i= 1; 2: © o, Ny, )

where Eo 3};2 is the i-th output variance in the IVC

control problem when u is applied, then u is also a
solution to the OQVC Control Problem and the
corresponding multipliers are the diagonal elements
of Qo given in the IVC control problea.

The above Theorem is the basis of the following
algorithm for solving the (QAS problem posed in section
1:

An 0AS Algorithm

Enter A, By, Co Do Wo, Re > 0, 6% 8@ = 1

for all j.
Stepl Setk = 0.
Step2 Use a dual version to solve the OVC control

problem with R > 0 and calculate the optimal
input variances;

Ew uj (33)

for all j such that #; = 1. The multiplier

vector q is a solution.

Step3 Use a dual version to solve the IVC controi

problem with the output weighting matrix

QD = diag[ ?1—;. _q;v b q—m (3'4)
and an appropriate upper bound (from (3.7a)
below) of the input variance, u®. The multiplier
vectar r is a solution.

Stepd Calculate the actuatar effectiveness values

aj = r_i(fmn; Step 3)
X Eo Uj (ﬁ'ounzl Step 2) (3»5)
i
for j such that 8, = 1.

Step5 Setk = k + 1 and delete one actuator which
has the smallest value of a; (ie, set 5, = 0
for the corresponding actuator).

Step6  Repeat Steps 2 thru 5 until

N = 15_'1 8, (36)

The final controller would be the one from Step 2. Hence
the output variance constraints are guaranteed to be
satisfied. In case that there are variance constraints on
each actuator, they should be used for the upper bound uf

in Step 3 to solve the IVC control problem, Otherwise,
the following value is recommended:

u? = v Ew ufor all j such that p;™ = 1 (3.72)

where Ew Ul is available from the solution of OVC
control problem in Step 2 and

Eo U

i = - == 37
7 1 %Eo = (3

Notice that the above algorithm does not use any integer
programming strategy. This algorithm does not guarantee
that the solution will be globally optimal. However, for
most of our numerical examples, the algorithm yields the
optimal solution,

4. Numerical Examples

Consider the simply-supported Euler-Bernoulli beanm
shown in Figure 1 for which three force actuators and
three torque actuators are avallable. The problem is to
find two actuators which consume minimum control energy
while satisfying output variance constraints, The system

dynamics of the beam is described by modal data as
follows:

Tt Zanteln=Bu+ wl)t W .] (41a)
y = Cn . )
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where
o = diagll, 4,9, 16, 25] , (4.1b)
¢ = diag[50e-3, 8732e-3,
1.82%e-2, 3.211e-2, 5.0e-2] (4.1c)
and 7m is the vector of the modal coordinates. The

input distribution matrix B and the output matrix C can
be obtained analytically from the mode shapes and the
locations of actuators and sensors, respectively (6].
The actuator process noise W, and the plant disturbance
wp, are assumed to be zero-mean Gaussian white noise

processes. The intensity of Wy is taken as Wp = Is.

We shall use two different intensities of Wa,
Wa = 011 and W, = 051]6, to see that there is an
optimal number of noisy actuators when the actuator
noises are big enough relatively to the actuator signals
u. The upper bounds of the output variances are

o? = [7.9965e-2, 89080e-2, 9.7204e-2, 1.1765e-11T . (4.2)

For the IVC control problem, we used the formula given
by (3.7) to get the input variance constraints, The
program CONSTR.M in MATLAB Optimization Toolbox [9] was
utilized to solve the dual version (2.4) for both OVC
and IVC control problems,

The actuator selection process proposed in OAS
algorithm is shown in Table 1, where the actuator
effectiveness values defined by (3.5) and the total
control energy are given at each iteration. N represents
the number of actuators retained for controller design at
each iteration, According to the minjwum value of «jy,
one actuator is deleted at each iteration of OAS
algorithm, Notice that for this example deleting 4
actuators (Fy Fz Tz and T3) at the first iteration
(N = 6) results in the same set of actuators as
one-at-a-time deletion, For both cases of W, = 01 Is

and W, = 05 Is, the actuator to be deleted according
to the «; is the same at each iteration. ¥hen

Wa = 0.1 Ig, the total control energy required to meet
the output variance constraints are monotonically
increasing as the number of actuators decreases, By
exhausting all possible combinations of the specified
number of actuators, we confirmed that at each iteration
the remaining set of actuators shown in Table 1 consumes
minimun energy with respect to other set of actuators.
For example, at the iteration of N = 4, there are 15
possible combinations of 4 actuators ( gCq), out of
which the set in Table 1 {Fz F3 T and T3} turn out to
consume minimum control energy. Table 2 shows the input
variances calculated after the OVC control problem is
solved at the first iteration. Notice that the second
case (Wq = 051¢) use very noisy actuators (the
squared RMS values of the actuator signals are smaller
than the intensity of the noises), As shown in the last
row of Table 1, for the case of W, = 0516 the

minimum value of control energy is attained at N = 4,
Hence the optimal number of actuators is 4.

Once the actuator selection problem is solved, the
OAS algorithm provides valuable information: actuator
sizes necessary to achieve the required performance. For

‘our examples, the required RMS dynamic range of

actuators, F3 and T;, are

Fs (S) = Y0473 = 06761 .
T, (3) = VO5MI0 = 0751 ) for Wa = 01 1s (43a)
F3 (S) = vOBIOR2 = 08061 } )
T\ (8) = Y057019 = g0 | or Wa = 051s (43b)

It is concluded that the proposed actuator selection
algorithm produces the best set of actuators while the
required performance is achieved. In addition, the
information about actuator size necessary to meet the
required performance is obtained as a by-product of the
algorithm, When noisy actuators are to be used, the
algorithm can yield the optimal number of actuators,
However, it is found that if the actuator noise is much
greater than the external plant disturbance our algorithm
fails to find the optimal solution in one example, It is
worthwhile to investigate under what conditions the
algorithm produces the optimal solution,
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Figure 1. Simply-Supported Euler-Bernoulli Beam
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Table 1. Actuator Selection Process for the Euler-Bernoulli Beam

Actuator Effectiveness Value g

Actuator N=6 N=5 N=4 N=3 N=2
F 1.6754
| (1.6323)
F, 2.1184 2.2031 2.4882 3.3083

(2.0610) | (2.1439) | (2.4510) | (3.2139)

. n 2. 4057 2.5054 2.8612 41211 8.1223
: (2.2693) | (2.3672) | (2.7246) | (3.7757) | (7.3020)
T 2.7777 2.9289 3. 6281 5.0921 11,39
! (2.8560) | (3.0116) | (3.6558) | (5.1989) | (11.261)
T 2.0936 2.1750 2.4313
: (2.0263) | (2.1057) | (2.3948)
.y 1.6791 1.7236

(1.7059) (1.7522)

Total Control |} 7,.2291e-1 | 7.3143e-1 | 7,5902e-1 | 8.5565e-1 | 1,0273e+0
Energy (1.6060e+0)|(1.5926e+0)|(1.4688e+0) [(1. 46976+0) |(1.5316e+0)

%, The quantities in ( )} are for W, = 05 I¢.

Table 2. Input Variances at the First Iteration

Actuator Noise

Intensity Wa Fi Fe Fa T Te Ts
0.1 Ig 0.02052 | 0.11848 { 0.17218 | 0,22248 { 0.11623 | 0.07307
0.5 Is 0.04880 | 0.25799 | 0.34308 | 0,53635 | 0.24645 | 0,17336
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