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Input Constrained Robust Model Predictive Control with Enlarged

Stabilizable Region

Young 11 Lee

Abstract: The dual-mode strategy has been adopted in many constrained MPC (Model
Predictive Control) methods. The size of stabilizable regions of states of MPC methods
depends on the size of underlying feasible and positively invariant sets and the number of
control moves. The results, however, may perhaps be conservative because the definition of
positive invariance does not allow temporal departure of states from the set. In this paper, a
concept of periodic invariance is introduced in which states are allowed to leave a set
temporarily but return into the set in finite time steps. The periodic invariance can be defined
with respect to sets of different state feedback gains. These facts make it possible for the
periodically invariant sets to be considerably larger than ordinary invariant sets. The periodic
invariance can be defined for systems with polyhedral model uncertainties. We derive a MPC
method based on these periodically invariant sets. Some numerical examples are given to show
that the use of periodic invariance yields considerably larger stabilizable sets than the case of
using ordinary invariance.

Keywords: Input constraints, model uncertainty, periodic invariance, receding horizon control.

1. INTRODUCTION

The ‘dual-mode paradigm’ is known to be an
effective way to handle physical constraints in
actuators [1-4]. The basic idea of the dual-mode
paradigm is to use feasible control moves to steer the
current state into a feasible and invariant set in finite
time steps. A constant state feedback control is
assumed to be used once the state belongs to the
feasible and invariant set.

A feasible and invariant set is defined with respect
to a state feedback gain and it requires that the state
feedback contro! satisfies the input constraints for all
the states in the set and that states should remain in
the set when the state feedback control is applied. This
dual-mode strategy has been adopted in many
constrained MPC methods. The size of stabilizable
regions of states of MPC methods depends on the size
of underlying feasible and positively invariant sets
and the number of control moves.

The main idea of this paper is to replace the
conventional invariant set in constrained model
predictive control by a set that has the following
extended invariance properties, (i) allows the state to
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leave the set temporarily, provided that there are no
constraint violations and that the state returns within
the set after a finite number of steps and (ii) considers
use of multiple state feedback law in the definition of
invariance. The concept of quasi-invariant sets was
introduced in [3], which allows the state to leave the
set temporarily. The approach used in [3] is based on
polyhedral type terminal sets. In [3], however, use of a
single state feedback gain was assumed in the
definition of terminal invariant set and no systematic
method of obtaining underlying state feedback gain
was given.

In this paper, a concept of periodic invariance is
introduced in which states are allowed to leave a set
temporarily but return into the set in finite time steps.
Moreover, the periodic invariance involves the use of
more than one state feedback gain and several
ellipsoidal sets. These facts make it possible for the
periodically invariant sets to be considerably larger
than conventional invariant sets. A computation
scheme based on LMIs (Linear Matrix Inequalities)
will be proposed so that invariant sets as well as
underlying feedback gains can be obtained
systematically. The periodic invariance can be defined
for systems with polyhedral model uncertainties. We
derive a MPC method based on these periodically
invariant sets. In the proposed MPC strategy, the
convex-hull of periodic invariant sets is used as a
target set of the dual-mode approach to yield a large
stabilizable set.

In Section 2, the periodic invariance is defined. In



Input Constrained Robust Model Predictive Control with Enlarged Stabilizable Region 503

Section 3, a MPC method that uses the convex hull of
the positively invariant sets as a target is developed. A
Lyapunov function is defined as a sum of quadratic
function and it will be shown that this Lyapunov
function can be made to monotonically decrease.

2. PERIODIC INVARIANCE AND
FEASIBILITY

Consider the following input constrained linear
uncertain system:

x(k+1)=Ax (k)+Bu (k), |uk)<n, (1)

where x(k)eR”, u (k)e R™ and the matrix functions
A and B belong to the polyhedral uncertainty class:

=1

-~ o~ -~ ~ np
I ={(A,B)|(A, B)= m(4.B),
) (2)
P
>0, Z'H:l}.
[=1

We will consider a time-varying state feedback
control law as:

u(ky=K (k) x (k), 3)
which requires
lu ()= K (k) x (k) |<u . “4)

Provided that (4) is
u(k)=K (k) x(k), would yield

satisfied, use of

x(k+1) =® (k) x(k), D:=A+ BK (k). (5)

Consider the uncertain linear system described by (1)
and (2). A set £, is defined to be feasible and the

periodic-invariant with respect to the time varying
feedback control u (k)=K (k) x(k), of (3) if there

exists a finite positive number v such that for any
initial state x(k)e£,, the future states x(k+i),
(i=1,2,---,v) of the system (5) satisfy the input
constraint (4) (feasible) and x(k +v)belongs to £,
(periodic-invariant).
Consider an ellipsoidal set defined as:

Q ={x|x’POxS1}. (6)

The periodic-invariance of €, would be checked by

considering propagation of the states in terms of
ellipsoidal sets. Assume that the closed-loop dynamics

of (5) makes x(k+)eQ for any x(k)e,
where
2 :{x|x'P]x$1}. (7

It is easy to see that the following relation:

B-® () B ()& (k)>0, 1=12n,  (8)

guarantees that for any x(k)eg,
and (4,B)eQ &, (k) = 4 + BK(k) .

Similarly, an ellipsoidal set Q, can be defined for

x(k+1) e

, where

the ellipsoidal set ;. Relations

B-® (k+1)' Py (k+1) & (k+1)>0,

9
s2em O

would guarantee that x(k+2)e, forany x (k+
De® and (;I,E) e .

The above argument can be applied recursively to
yield ellipsoidal sets of states:

Q; ={x|xgxsl}. (10)

and relations
Pj-<1'>, (k+j)’Pj+1 k+)ND(k+j)>0,

11
1=12--,n an

P

for j=0,1,2,---,v—1. The periodic-invariance of
Q, requires that €, should belong back to £.
Thus, relation

P,~Fy>0 (12)

would guarantee the periodic-invariance of £, with

respect to the switching control (3). On the other hand,
it should be noted that the above arguments hold true
for system (1) provided that

1K (k+ j)x|<@VxeQ;, 03
=01, v-1.

Conditions (8), (9), (11), (12) and (13) can be
transformed into LMIs using the technique proposed
in [6] and used in [4] as per the following theorem.

Theorem 1: Consider the constrained uncertain
system (1)-(2). An ellipsoidal set:

.QO:{x|x’POx£1} (14)

is feasible and periodic-invariant with respect to the
time-varying control (3) provided that there exist

matrices Q] = f’j——l (] = 0, 1, 2,"',\)) ’ and )/ja XJ
(j=0,1,2,---,v—1) such that 1/jt=K(k+j)Qj and

Qi (40 +BY;)"
40,4 +BY;_ 9;

>0 (15)

for 1:1,2,...,,7}7 and j=1,2,---,v,
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_
g” g”}o (16)
v 0
and
(Xx. Y,
Y; ’}o, X, <it? 17)
RIBRY

for i=12,---,m and j=0,1,2,---,v—1 , where

X;; and #; represent the i" element of X ; and

and u; , respectively.

Proof: Multiplying Q; =Pj*1 on both sides of
(11) yields:

Q-4 0 +B K+ )0 Q"

(4 Q;+B K(k+))Q;)>0, (18)

/= 1,2,---,np.

for j=0,1,2,---,v—1. By the Schur complement,
relation (18) can be transformed into LMIs (15) with
Y; = K(k+ /)Q;. The LMI (16) can be obtained from
(12) in a similar manner.
Denote the i row of K(k+ j) as K;(k+ j), then:

|K; (k+ ) x (k+ ))
| Ky (k+ ) P3P 2x (ke + P

lug(k+ I

IA

KK xh+ T Pixt+ ) (19)
(using Cauchy-Schwarz inequality)

T
<10,

Thus the existence of a symmetric matrix X; satisfying
(17) guarantees that |K;(k+j)x(k+j)|<u; for
i=1,2,---,m. O
The relaxation of the definition of invariance through
the introduction of periodic invariance allows the state
to leave €, for a period steering it back to £ after
v moves. This in turn allows for the enlargement of
the volume of €,, which can be achieved through
convex optimization:

Algorithm 1

min  ~log(det(Q;))
Q) X;:Y;
il

Algorithm 1 is a Complex Problem described in [6],
which is convex and can be solved efficiently in
polynomial time. Note that the LMIs (15)-(17) do not
depend on the current state, so the Algorithm can be
applied offline to obtain a periodic-invariant set of
maximum volume.

subject to (15)-(17). (20) |

3. RECEDING HORIZON CONTROL BASED
ON PERIODIC INVARIANCE

The optimization of Algorithm 1 was aimed
exclusively at the minimization of —log(det(Po_l))
with the view to enlarging the volume of ;. The

sizes of accompanied ellipsoids £2;

i _].:0919'“:

v-1. are expected to be big also.

Consider the convex hull Z of the ellipsoids £,
j=0,1,2,---,v—1. Tt is clear that E is larger than
the union of the ellipsoids Qj, j=0,1,2,---,v—1.

Furthermore, = is invariant in the sense that there
exists a feasible control input u(k), which makes the

current state x(k)eZE remain in E as per the

following Lemma.

Lemma 1: Consider the uncertain system (1)-(2)
and ellipsoidal sets Qj, 7=0,1,2,---,v—1. defined

as (10)-(13). Denote the convex hull of £;,

—

j=0,1,2,---,v—1. as E.Ifastate x(k) belongs to
=, then there exist a feasible control input «(k) that
guarantees that x(k)e =.

Proof: A state x(k) € Z can be represented as:

x(ky=Y A;x;(k),
= @a1)
DA =1,4,20,
Jj=0
where X; eQ Ix Consider the control input u(k)=

v—1
2. K;A;x;(k),then x(k+1) can be represented as:
j=0

x(k +1) = Ax(k) + Bu(k)

v-1

3 A;(A+BK ;)x;(k) (22)

S~
(=

=3 Ak +1).
j=0

<
—_—

From the definition of Qj, j=0,1,--,v-1, X;

(k+1)=(4+ EKj )x(k) € Q. Thus, it is easy to see
that x(k +1)€E also and we can conclude that there
always exists a feasible state feedback law that makes
x(k) remainin E. 0
Based on the above argument, we would like to
propose a MPC strategy using = as a target set.

Assume that €, , corresponding ellipsoids ©; ,
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j=0,1,2,---;)v—1, and their convex hull = were
obtained by solving (20). Our control strategy is to

—

steer the current state into = using a feasible control
move u(k). According to the uncertainties (2) that

reside in the system, x(k+1) would belong to the
polyhedral set of states defined as:

3= {x eR"|x= me (Ayx(k)+ Bu(k)) 23)
I=1

=1

(m 2 0),iﬂl = 1}-

It is easy to see that 3 = is guaranteed if and only
if all the vertices of I i.e. 4;x(k)+ Bu(k) belong

If X (k + l) = Alx(k) + Blu(k) c= R then X
(k +1) can be represented as:

to = .

v—1

X; (k + 1) = Z ﬂ]’jxl,j (k + 1) (24)
j=0
v—1
(ﬂ’l,j 20,2/1,’1- :1),
j=0

where x; ;(k+1)eQ; . If we denote 4 ;x; as
J"c,, j then the conditions (24) and X e j can be

rewritten as:

v—1
Ax(k)+ Bu(k) = 3" % ;(k +1), (25
j=0
(Ju(k)|<u ) and
o P
YRS Ay (26)

1,7

respectively, for /=1,2,---,n - Thus, the existence of
vectors x; ;(k+1) and scalar values 4, ; for /=
1,2,~~,np and j=0,1,2,---,v—1. satisfying (25)-
(26) guarantees that x(k+1)eE.

The control input u(k) satisfying (25)-(26) would

not be unique. Thus, we need certain criteria to choose
a particular u(k) that is optimal in some sense.
Consider the state decomposition (25) and define a
quadratic function:

Vix(k+1]k)= Zl:x, Jk+DTPE (k+D). (27

J=0

We would like to use an upper bound on V(x
(k+1]k)) asour cost index i.e.

v—1

azy a; (28)
j=0

a, 2% (k+1) P%, (k+1). (29)

According to the relations (11)-(12), V(x;(k+1]k))

and in turn o can be made to be monotonically
decreasing, which will be shown later. Note that
relations (25)-(26) and (28)-(29) can be rewritten as
the following L.MIs:

v—1

diag(4yx(k) + Bu(k) = D % ;(k+1)=0 (30)
j=0
dyo &+ o
X pk+D) A Q) @31)
J=0Lv=11=12,,n,
diag(w - u(k)) 20 (32)
v—1
azy a; (33)
i=0
a; & ;k+)" o
% (k+1) 0, (34)

J=0Lv=LI=12,---,n,.
Now the receding horizon control method based on
the above argument can be described as follows:

Algorithm 2
Step 1: (off-line) Obtain matrices P;,j=0,1,2,--,v

and corresponding ellipsoidal sets £;, j=0,1,--,

v—1 according to Algorithm 1.
Step 2: (on-line) For a given current state x(k)
compute the optimal control u(k) as:

u (k)= arg{ (35)

min max a}

u(k)l,.il’j,aj

subject to (30)-(34).

Apply the optimal u(k) to the system and repeat this

on-line procedure on the next time steps. O
The closed-loop stability of Algorithm 2 can be

established as per the following theorem:

Theorem 2: Consider the uncertain system (1)-(2).
Assume that matrices P;,=0,1,2,**-,v and corresponding

ellipsoidal  sets Qj , Jj=0,12,---,v—1 were

obtained as Step 1 of Algorithm 2 and that Step 2 was
feasible at the initial time step, then Step 2 of
Algorithm 2 remains feasible and the use of the
optimal control u(k) obtained at each time step
guarantees the asymptotic stability of the closed-loop
system.
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Proof: Feasibility: Conditions (25)-(26) guarantee
that x(k+1)eZ for a given x(k). Once the state is
steered into E , (25)-(26) would have feasible
solutions for all the subsequent time steps since = is
invariant as Lemma 1.

v—1
Stability: Assume that x(k+1)=) A;x;(k+1)
j=0
and X; er for j=0,1,2,---,y—1. Consider the
v—1
case in which the control input u(k)= Z K;A;x; (k)
j=0
is applied to the system, then x(k+2) can be
represented as:

x(k +2) = Ax(k +1) + Bu(k) (36)
v-1
= > (A+BK;)%;(k+1)
=0
1

Jej+l(k+l) s
=0

i
<I\.

~
Il

where % (k+2):=(4+BK)%,(k+1). Then, from
relations (11)-(12) we have:

£k + D PR (k+1)> 5, (k+2) P&, (k+2)(37)

+1

for j=0,1,2,---,v—1 with % (k+2):=%,(k+2).
Denote the upper bounds as:

o, (k+2)2%,(k+2) PR, (k+2). (38)
v—1

a (k+2)2 Y a;(k+2). (39)
j=0

Then from (37), we could have a(k+2) smaller
than a(k+1) .This
recursively to conclude that a(k +7) can be made to

argument can be applied

be monotonically decreasing and in turn the states
approach to the origin. O

4. NUMERICAL EXAMPLE

Consider the uncertain system (1) with polyhedral
set I1 defined by (2) with # =1 and matrices

_[0.9347 0.5194 _[0.0591 0.2641
17103835 0.8310]° "2 [1.7971 0.8717)
5[ 1:4462] (40)

~0.7012

This system is unstable and has uncertainties in the
system matrix 4. We apply Algorithm 2 to this

system. Its feasibility depends on the current state x(k).

Once a feasible solution has been obtained, the state
can be steered to the origin as it was shown in
Theorem 2. The set of states for which Algorithm 2 is
feasible would become the stabilizable region of states.

Fig. 1 shows stabilizable region of states wit
v=3,5 and 9. This figure shows that by increasing

v, we can obtain a considerable increase of volume for
a stabilizable set. Note that v=1 is equivalent to
using ordinary feasible and invariant sets. The
stabilizable regions are bigger than those of earlier
works [2] and [4], which are based on ordinary
invariant sets.

20 T T Y T T

gy

k0

=355

i ' L 1
-13 34 -5 & 3 in 15

Fig. 1. Regions of states for which Algorithm 2 has
feasible solutions with v =3 (inner line), 5 and
9 (outer line), which are larger than those of
earlier works [4] (dotted line).

20

18

28 : L . 1 L
-1% -3 -5 o 5 10 15

Fig. 2. The region of state for which Algorithm 2 has
feasible solutions with v =9 along with
corresponding ellipsoidal solutions Q;, ;=

0,1,2,---,8.
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Fig. 3. State and input trajectories when Algorithm 2
is applied to system (40) with initial state

x(0)=[-13.4 16.5] and v=9.

The stabilizable region of states with v=9 is
shown in Fig. 2 along with corresponding ellipsoidal
sets Qj, 7j=0,1,2,---,v—1. In Fig. 3, both state and

input trajectory when Algorithm 2 was applied to the
system with initial state x(0)=[-13.4 16.5]T are

shown. The control input is almost saturated for the
time steps 2 to 6.

5. CONCLUSIONS

A receding horizon control strategy was developed
for input constrained linear uncertain systems based
on periodically invariant sets. The definition of the
periodically invariant set allows the state to leave the
set temporarily. An ellipsoidal set is said to be
periodically invariant if there is a series of feedback
gains such that the use of these gains guarantees that
all the states in the set return to the set in finite time
steps. The convex hull of these periodically invariant
sets can be shown to be positively invariant in the
sense that there exists a feasible input that makes the
states remain in the convex hull.

A receding horizon control strategy in which the
current state is steered into the convex hull of
periodically invariant sets was proposed. A Lyapunov
function is defined as a sum of quadratic functions
and it was shown that this Lyapunov function can be
made to be monotonically decreasing by using a
nonlinear control law based on the partitioning of the
current state and applying different feedback gains for
the partitioned states.

The invariant set used in this paper contains the
ellipsoidal invariant sets from earlier works, which
were based on ordinary invariant sets, as a special
case. It will provide a larger invariant set and a larger
stabilizable set in turn.
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