• Title/Summary/Keyword: Input Constraint

Search Result 202, Processing Time 0.024 seconds

An Algorithm for Robust Noninteracting Control of Ship Propulsion System

  • Kim, Young-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.393-400
    • /
    • 2000
  • In this paper, a new algorithm for noninteracting control system design is proposed and applied to ship propulsion system control. For example, if a ship diesel engine is operated by consolidated control with controllable pitch propeller (CPP), the minimum fuel consumption is achieved satisfying the demanded ship speed. For this, it is necessary that the ship is operated on the ideal operating line which satisfies the minimum fuel consumption, and the both pitch angle of CPP and throttle valve angle are controlled simultaneously. In this context of view, this paper gives a controller design method for a ship propulsion system with CPP based on noninteracting control theory. Where, linear matrix inequality (LMI) approach is introduced for the control system design to satisfy the given $H_{\infty}$, constraint in the presence of physical parameter perturbation and disturbance input. To the end, the validity and applicability of this approach are illustrated by the simulation in the all operating ranges.

  • PDF

Local motion planner for nonholonomic mobile robots

  • Hong, Sun-Gi;Choi, Changkyu;Shin, Jin-Ho;Park, Kang-Bark;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.530-533
    • /
    • 1995
  • This paper deals with the problem of motion planning for a unicycle-like robot. We present a simple local planner for unicycle model, based on an approximation of the desired configuration generated by local holonomic planner that ignores motion constraints. To guarantee a collision avoidance, we propose an inequality constraint, based on the motion analysis with the constant control input and time interval. Consequently, we formulate our problem as the constrained optimization problem and a feedback scheme based on local sensor information is established by simply solving this problem. Through simulations, we confirm the validity and effectiveness of our algorithm.

  • PDF

Optimal Waypoint Guidance for Unmanned Aerial Vehicles (UAVs) (무인기를 위한 최적 경로점 유도)

  • Ryoo, Chang-Kyung;Shin, Hyo-Sang;Tahk, Min-Jea
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.3
    • /
    • pp.240-245
    • /
    • 2005
  • In this paper, planar waypoint guidance synthesis for UAVs using the LQ optimal impact-angle-control guidance law is proposed. We prove that the energy-optimal control problem with the constraint of passing through the waypoints is equivalent to the problem of finding the optimal pass angles on each waypoint of the optimal impact-angle-control law. The optimal pass angles can be obtained as a numerical solution of the simple pass angle optimization problem that requires neither input parameterization nor constraints. The trajectory obtained by applying the optimal impact-angle-control law with these optimal pass angles becomes energy optimal.

A Study on the Optimal Design, Modeling and Control of the Multi d.o.f Precision Positioning System Using Magnetic Levitation Actuating Principle (자기 부상 방식 구동원리를 이용한 다자유도 정밀 위치 시스템의 최적 설계, 모델링 및 제어에 관한 연구)

  • Jeong, Gwang-Seok;Baek, Yun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.779-787
    • /
    • 2001
  • The multi degree of freedom system using magnetic levitation has been implemented successfully. Differently from another noncontact systems, the developed system was focused on the maximization of the system stiffness under the constraint of a limited input. The variation of a relative adopting point between the magnetic pair, its location on the fixed base, and the selection of optimal specifications for the main active magnetic elements give us another chance to realize the increased robustness against external disturbances with the less control inputs. In this paper, the overall development procedures are given including the optimal design, the dynamic modeling, the various control tests, and the main issues to be solved.

Efficient Target Bit Allocation Scheme in a Rate-Distortion Sense

  • Lee, W.Y.;Ra, J.B.
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1997.06a
    • /
    • pp.31-36
    • /
    • 1997
  • Bit allocation is a critical problem in video encoding such as MPEG. To improve the quality of the reconstructed sequence for a given bit rate, the assigned target bits for a group of pictures (GOP) must be allocated to each picture efficiently. In this paper, we derive a target bit allocation algorithm for more efficient rate control, by assuming that the average rate-distortion curve for an input source is logarithmic. This target bit allocation is based on Shannon's rate-distortion theory, which deals with the minimization of source distortion subject to a channel rate constraint. Simulation results show that the proposed target bit allocation algorithm provides better performance than the one in MPEG-2 Test Model 5 (TM5).

  • PDF

A New Dynamic Transmission-Mode Selection Scheme for AMC/HARQ-Based Wireless Networks

  • Ma, Xiaohui;Li, Guobing;Zhang, Guomei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5360-5376
    • /
    • 2017
  • In this paper, we study the cross-layer design for the AMC/HARQ-based wireless networks, and propose a new dynamic transmission-mode selection scheme to improve system spectrum efficiency. In the proposed scheme, dynamic thresholds for transmission-mode selection in each packet transmission and retransmission are jointly designed under the constraint of the overall packet error rate. Comparing with the existing schemes, the proposed scheme is inclined to apply higher modulation order at the first several (re)transmissions, which corresponds to higher-rate transmission modes thus higher average system spectrum efficiency. We also extend the cross-layer design to MIMO (Multi-input Multi-output) communication scenarios. Numerical results show that the proposed new dynamic transmission-mode selection scheme generally achieves higher average spectrum efficiency than the conventional and existing cross-layer design.

Vibration Control of Elastic Systems (탄성계의 진동제어)

  • Lee, S.J.;Ha, Y.K.;Park, Y.P.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.5-19
    • /
    • 1988
  • The feedback controllers for the active vibration control of elastic systems are developed using optimal regulator, optimal tracking, time optimal and noise observer algorithms. Using the modal analysis of the elastic systems, the effects of the actuator positions, the input weighting factor and the magnitude of the constraint of the actuator force are investigated.

  • PDF

Optimization of the Heat Input Condition on Arc Welding (아아크 용접시 입열 조건의 최적화에 관한 연구)

  • 박일철;박경진;엄기원
    • Journal of Welding and Joining
    • /
    • v.10 no.2
    • /
    • pp.32-42
    • /
    • 1992
  • A method of optimization of process parameters in Arc Welding has been discussed in this paper. The method of investigation is based on the numerical calculation of weld bead by a finite element method and non-linear optimization technique is applied to estimated the optimization process parameters from the numerical calculation. The common package program(ANSYS 4.4A) was used to obtain the process parameters for a thin plate arc welding (TIG, CO$_{2}$). The results on some test are satisfactory and the used method of this paper is a useful guide to the optimum welding condition.

  • PDF

RHC based Looper Control for Hot Strip Mill (RHC를 기반으로 하는 열간압연 루퍼 제어)

  • Park, Cheol-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.295-300
    • /
    • 2008
  • In this paper, a new looper controller is proposed to minimize the tension variation of a strip in the hot strip finishing mill. The proposed control technology is based on a receding horizon control (RHC) to satisfy the constraints on the control input/state variables. The finite terminal weighting matrix is used instead of the terminal equality constraint. The closed loop stability of the RHC for the looper system is analyzed to guarantee the monotonicity of the optimal cost. Furthermore, the RHC is combined with a 4SID(Subspace-based State Space System Identification) model identifier to improve the robustness for the parameter variation and the disturbance of an actuator. As a result, it is shown through a computer simulation that the proposed control scheme satisfies the given constraints on the control inputs and states: roll speed, looper current, unit tension, and looper angle. The control scheme also diminishes the tension variation for the parameter variation and the disturbance as well.

High Frequency Enhancement of Sound Using Wavelet Transform

  • Yoon Won-Jung;Lee Kang-Kyu;Park Kyu-Sik
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.233-236
    • /
    • 2004
  • This paper proposes new method for the enhancement of nonexistent high frequency spectral contents from low sample rate audio signal. For example, Due to the protocol constraint, the audio bandwidth of MP3 is restricted to 16Khz. Although band-restricted MP3 audio provide savings of storage space and network bandwidth, it suffers a major problem of a loss in high frequency fidelity such as localization, ambient information, and bright nature of audio. This paper provides a new mathematical analysis for the adaptive estimation of the high frequency contents based on the nature of the input low sample rate audio. Proposed method can be worked globally to any kind of audio such as speech and music that are restricted by sampling rate and bandwidth.

  • PDF