DOI QR코드

DOI QR Code

Optimal Waypoint Guidance for Unmanned Aerial Vehicles (UAVs)

무인기를 위한 최적 경로점 유도

  • 유창경 (한국과학기술원 기계공학과 항공우주공학) ;
  • 신효상 (한국과학기술원 기계공학과 항공우주공학) ;
  • 탁민제 (한국과학기술원 기계공학과 항공우주공학)
  • Published : 2005.03.01

Abstract

In this paper, planar waypoint guidance synthesis for UAVs using the LQ optimal impact-angle-control guidance law is proposed. We prove that the energy-optimal control problem with the constraint of passing through the waypoints is equivalent to the problem of finding the optimal pass angles on each waypoint of the optimal impact-angle-control law. The optimal pass angles can be obtained as a numerical solution of the simple pass angle optimization problem that requires neither input parameterization nor constraints. The trajectory obtained by applying the optimal impact-angle-control law with these optimal pass angles becomes energy optimal.

Keywords

References

  1. I. Spangelo and O, Egeland, 'Generation of energy-optimal trajectories for an autonomous underwater vehicle ', Proceedings of the 1992 IEEE international Conference on Robotics and Automation, pp,2107-2112, May, 1992 https://doi.org/10.1109/ROBOT.1992.219970
  2. G. Moon and Y. Kim, 'Optimum flight path design passing through waypoints for autonomous flight control system', AIAA 2003-5334, Proceedings of the 2003 AIAA Guidance, Navigation, and Control Conference and Exhibit, Aug., 2003
  3. J. Z. Ben-Asher, 'Optimal trajectories for an unmanned air-vehicle in the horizontal plane', Journal of Aircraft vol. 32, no, 3, pp,677-680, May-June,1995 https://doi.org/10.2514/3.46773
  4. I. Shapira and J. Z. Ben-Asher, 'Near-optimal horizontal trajectories for autonomous air vehicles', Journal of Guidance, Control, and Dynamics, vol. 20, no, 4, pp, 735-741, Jul.-Aug., 1997 https://doi.org/10.2514/2.4105
  5. C. Lawrence, K. L. Zhou, and A. L. Tits, User's Guide for CFSQP Version 2,5: A C Code for Solving (Large Scale) Constrained Nonlinear (Minmax) Optimization Problems, Generating Iterates Satisfying All Inequality Constraints, Institute for Systems Research, University of Maryland, 1997
  6. M. J. Tahk and B. C. Sun, 'Co-evolutionary augmented Lagrangian methods for constrained optimization', IEEE Transactions on Evolutionary Computation, vol.4, no, 2, pp, 114-124, July 2000 https://doi.org/10.1109/4235.850652
  7. P. Zarchan, Tactical and Strategic Missile Guidance, 4th ed., AIAA Inc., pp,11-15, 2003
  8. I. H. Whang and T. W 'Whang, 'Horizontal waypoint guidance design using optimal control', IEEE Transactions on Aerospace and Electronic Systems, vol. 38, no, 3, pp, 1116-1120, July, 2002 https://doi.org/10.1109/TAES.2002.1039430
  9. V. Bakaric, Z. Vukic, and R. Antonio, 'Improved basic planar algorithm of vehicle guidance through waypoints by the line of sight', Proceedings of IEEE International Symposium on Communications and Signal Processing, pp, 541-544, 2004 https://doi.org/10.1109/ISCCSP.2004.1296435
  10. 류창경, 조항주, '표적충돌각과 최대가속도 제한을 고려한 최적유도기법', 한국자동제어학술회의논문집(KACC), pp, 601-606,1992
  11. C. K. Ryoo, H. Cho, and M. J. Tahk, 'Optimal guidance laws with terminal impact angle constraint', to appear in Journal of Guidance, Control, and Dynamics
  12. D. E. Kirk, Optimal Control Theory - An Introduction, Prentice-Hall, Englewood Cliffs, New Jersey, 1970, pp, 54-55
  13. D. G. Hull, 'Conversion of Optimal Control Problems into Parameter Optimization Problems', Journal of Guidance, Control, and Dynamics, vol. 20, no, 1, Jan. ?Feb., 1997, pp, 57-60 https://doi.org/10.2514/2.4033
  14. D. G. Luenberger, Linear and nonlinear programming, 2nd ed., Addison-Wesley, 1984
  15. A. E. Bryson, Jr. and Y-C Ho, Applied Optimal Control, John Wiley & Sons, 1975, pp, 158-164