• Title/Summary/Keyword: Inorganic-organic hybrid solar cells

Search Result 23, Processing Time 0.028 seconds

The Effect of PEDOT:PSS Thickness on the Characteristics of Organic-Inorganic Hybrid Solar Cells (PEDOT:PSS의 두께가 유무기 하이브리드 태양전지 성능에 미치는 영향)

  • Kim, Souk Yoon;Han, Joo Won;Oh, Joon-Ho;Kim, Yong Hyun
    • Current Photovoltaic Research
    • /
    • v.7 no.3
    • /
    • pp.61-64
    • /
    • 2019
  • In this study, we investigate organic-inorganic hybrid solar cells with a very simple three-layer structure (Al/n-Si/PEDOT:PSS). The performance of hybrid solar cells is optimized by controlling the sheet resistance and optical transmittance of the PEDOT:PSS layers. As the thickness of the PEDOT:PSS layer decreases, the optical absorption of the n-Si increases, which greatly improves the short-circuit current density ($J_{SC}$) of devices, but the increase in sheet resistance leads to a decrease in the open-circuit voltage ($V_{OC}$) and the fill factor (FF). The solar cell with the 180-nm thick PEDOT:PSS layer shows a highest efficiency of 8.45% ($V_{OC}$: 0.435 V, $J_{SC}$: $33.7mA/cm^2$, FF: 57.5%). Considering these results, it is expected that the optimizing process for the sheet resistance and transmittance of the PEDOT:PSS layer is essential for producing high-efficiency organic-inorganic hybrid solar cells and will serve as an important basis for achieving low-cost, high-efficiency solar cells.

Optimization Amorphous Silicon Tandem Cell for an applying Inorganic-organic Hybrid Cell (유무기 하이브리드 태양전지 적용을 위한 탠덤형 비정질 실리콘 태양전지 최적화 기술)

  • Jinjoo Park;Sangmin Yoo
    • Current Photovoltaic Research
    • /
    • v.12 no.3
    • /
    • pp.80-85
    • /
    • 2024
  • Purpose of higher conversion efficiencies, thin-film silicon solar cells based on amorphous silicon have been developed with a multiple-stack structure to fully utilize the absorption spectrum. Microcrystalline silicon (µc-Si) is commonly used in the bottom cell of such tandem junction solar cells, offering improved conversion efficiencies. However, the requirement for a thicker absorption layer to generate sufficient photocurrent presents challenges, primarily due to the lower absorption coefficient of µc-Si, resulting in longer deposition times and greater material thickness. To address these limitations, we propose the development of inorganic-organic hybrid solar cells by integrating a-Si tandem with solution-processed organic photovoltaic cells (OPVs), using low-bandgap semiconducting polymers. The OPVs have garnered significant attention as promising candidates for next-generation photovoltaic technology. As part of this effort, we have optimized the a-Si tandem cell by exploring different materials for a tunnel recombination layer and high quality intrinsic layers. The hybrid approach combines the advantages of both inorganic and organic materials, potentially offering a pathway towards more efficient and cost-effective solar cell solutions.

Silicon-Organic Hybrid Solar Cell Using Ag Nanowire/PEDOT:PSS Layer (은 나노와이어/PEDOT:PSS를 이용한 실리콘-유기물 하이브리드 태양전지)

  • Kyudong Kim;Sungjin Jo
    • Korean Journal of Materials Research
    • /
    • v.34 no.8
    • /
    • pp.395-399
    • /
    • 2024
  • Among various organic materials suitable for silicon-based inorganic-organic hybrid solar cells, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has been extensively studied due to its high optical transmittance, high work function, and low bandgap characteristics. The electro-optical properties of PEDOT:PSS have a significant impact on the power conversion efficiency of silicon-organic hybrid solar cells. To enhance the photovoltaic properties of the silicon-organic hybrid solar cells, we developed a method to improve the properties of the PEDOT:PSS film using Ag nanowires (NW) instead of conventional solvent addition methods. The influence of the Ag NW on the electro-optical property of the PEDOT:PSS film and the photovoltaic performance of the silicon-organic hybrid solar cells were investigated. The addition of Ag NW further improved the sheet resistance of the PEDOT:PSS film, enhancing the performance of the silicon-organic hybrid solar cells. The present work using the low sheet resistance PEDOT:PSS layer paves the way to develop simple yet more efficient silicon-organic hybrid solar cells.

Hybrid Solar Cells with Polymer/Fullerene Bulk Heterojunction Layers Containing in-situ Synthesized CdS Nanocrystals

  • Kwak, Eunjoo;Woo, Sungho;Kim, Hwajeong;Kim, Youngkyoo
    • Current Photovoltaic Research
    • /
    • v.2 no.4
    • /
    • pp.152-156
    • /
    • 2014
  • We report hybrid solar cells fabricated with polymer/fullerene bulk heterojunction layers that contain inorganic nanocrystals synthesized by in-situ reaction in the presence of polymer chains. The inorganic (cadmium sulfide) nanocrystal ($CdS_{NC}$) was generated by the reaction of cadmium acetate and sulfur by varying the reaction time up to 30 min. The synthesized $CdS_{NC}$ showed a rectangular flake shape, while the size of $CdS_{NC}$ reached ca. 150 nm when the reaction time was 10 min. The performance of hybrid solar cells with $CdS_{NC}$ synthesized for 10 min was better than that of a control device, whereas poor performances were measured for other hybrid solar cells with $CdS_{NC}$ synthesized for more than 10 min.

Development of a flexible solar cell fiber by using an organic-inorganic hybrid materials (${\codt}$ 무기 하이브리드 재료를 이용한 플렉서블 태양전지 섬유의 개발)

  • Song, Jun-Hyung;Kim, Joo-Yong;Park, Jung-Hyun;Kim, Gu-Young;Kim, Young-Kwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.299-301
    • /
    • 2007
  • An organic-inorganic hybrid solar cell fibers with characteristics such as formability, low-cost and tailorability was developed by deposition of C60 and CuPc on fiber surface. In spite of some variation according to the temperature of ITO deposition, the maximum open circuit voltage of 0.39V was attained at $150^{\circ}C$(1000end). The resulting solar cell showed the performances Isc=0.482, Voc=0.320, FF=0.285 ${\eta}_{e}=0.044$% which are comparable to one of other types of solar cells in literature.

  • PDF

Impact of CuSCN Deposition Solvents on Highly Efficient Perovskite Solar Cells (고효율 페로브스카이트 태양전지에서의 무기 홀 전도체 CuSCN 용매 효과)

  • Jung, Minsu;Seok, Sang Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.118-122
    • /
    • 2020
  • Inorganic-organic hybrid perovskite solar cells have demonstrated a significant achievement by reaching a certified power conversion efficiency of 25.2% in 2019 as compared to that of 3.8% in 2009. However, organic hole conductors such as PTAA and spiro-OMeTAD are known to be expensive and unstable when they are exposed to operational conditions. In this study, the inorganic hole conductor CuSCN was used to overcome such concerns. The influence of dipropyl sulfide (DPS) and diethyl sulfide (DES) as CuSCN deposition solvents on the underlying perovskite active layer was investigated. DES solvent was observed to be advantageous in terms of CuSCN solubility and mild for the perovskite layer, thereby resulting in a power conversion efficiency of 16.9%.

Improvement of Organic-Inorganic Hybrid Solar Cells' Property using ZnO based nanostructure surface treatment (ZnO 나노구조물 표면 처리를 통한 유무기 복합체 태양전지의 특성 향상)

  • Jin, Mi-Jin;Lee, Jyung-Hwan;Ban, Tae-Ho;Kim, Sang-Woo;Jeong, Soon-Wook;Kim, Sung-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.393-393
    • /
    • 2009
  • 유기물 기반 태양전지의 낮은 전하수송 효율 문제(전하이동거리 약 ~20nm)를 개선하기 위해서는 생성된 전자-홀 쌍이 빠르게 전극 층으로 이동하도록 태양전지 의 층 구조 및 특성을 제어하는 것이 중요하다. 그 방안으로 무기물 반도체인 산화아연을 나노구조물 형태로 제어하여 전자 이동층(Electron Conductive Layer) 으로 도입, 생성된 전자의 이동 가능한 면적을 넓히고 전자수송효율을 높여 유무기 복합체 태양전지의 Fill Factor를 향상시켰다. 또한 제조된 산화아연 나노구조물의 산소플라즈마 처리와 같은 표면 처리를 통하여 유기물 층과의 흡착성을 높이고 나노구조물 표면에 oxygen을 침투시켜 전자 이동도를 향상시켰다.

  • PDF

Solution processed inverted organic solar cells with hybrid inorganic/organic cathode interlayers

  • Lee, Jung Suk;Cha, Myoung Joo;Park, Yu Jung;Kim, Jin Young;Seo, Jung Hwa;Walker, Bright
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.154.2-154.2
    • /
    • 2016
  • In this work, we introduce a solution-processed CdS interlayer for use in inverted bulk heterojunction (BHJ) solar cells, and compare this material to a series of standard organic and inorganic cathode interlayers. Different combinations of solution-processed CdS, ZnO and conjugated polyelectrolyte (CPE) layers were compared as cathode interlayers on ITO substrates to construct inverted solar cells based on $PTB7:PC_{71}BM$ and a $P3HT:PC_{61}BM$ as photoactive layers. Introduction of a CdS interlayer significantly improved the power conversion efficiency (PCE) of inverted $PTB7:PC_{71}BM$ devices from 2.0% to 4.9%, however, this efficiency was still fairly low compared to benchmark ZnO or CPE interlayers due to a low open circuit voltage ($V_{OC}$), stemming from the deep conduction band energy of CdS. The $V_{OC}$ was greatly improved by introducing an interfacial dipole (CPE) layer on top of the CdS layer, yielding outstanding diode characteristics and a PCE of 6.8%. The best performing interlayer, however, was a single CPE layer alone, which yielded a $V_{OC}$ of 0.727 V, a FF of 63.2%, and a PCE of 7.89%. Using $P3HT:PC_{61}BM$ as an active layer, similar trends were observed. Solar cells without the cathode interlayer yielded a PCE of 0.46% with a poor $V_{OC}$ of 0.197 V and FF of 34.3%. In contrast, the use of hybrid ZnO/CPE layer as the cathode interlayer considerably improved the $V_{OC}$ of 0.599 V and FF of 53.3%, resulting the PCE of 2.99%. Our results indicate that the CdS layer yields excellent diode characteristics, however, performs slightly worse than benchmark ZnO and CPE layers in solar cell devices due to parasitic absorption below 550 nm. These results suggest that the hybrid inorganic/organic interlayer materials are promising candidates as cathode interlayers for high efficiency inverted solar cells through the modification of interface contacts.

  • PDF

Low-Temperature Processable Charge Transporting Materials for the Flexible Perovskite Solar Cells

  • Jo, Jea Woong;Yoo, Yongseok;Jeong, Taehee;Ahn, SeJin;Ko, Min Jae
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.657-668
    • /
    • 2018
  • Organic-inorganic hybrid lead halide perovskites have been extensively investigated for various optoelectronic applications. Particularly, owing to their ability to form highly crystalline and homogeneous films utilizing low-temperature solution processes (< $150^{\circ}C$), perovskites have become promising photoactive materials for realizing high-performance flexible solar cells. However, the current use of mesoporous $TiO_2$ scaff olds, which require high-temperature sintering processes (> $400^{\circ}C$), has limited the fabrication of perovskite solar cells on flexible substrates. Therefore, the development of a low-temperature processable charge-transporting layer has emerged as an urgent task for achieving flexible perovskite solar cells. This review summarizes the recent progress in low-temperature processable electron- and hole-transporting layer materials, which contribute to improved device performance in flexible perovskite solar cells.