DOI QR코드

DOI QR Code

Impact of CuSCN Deposition Solvents on Highly Efficient Perovskite Solar Cells

고효율 페로브스카이트 태양전지에서의 무기 홀 전도체 CuSCN 용매 효과

  • Jung, Minsu (School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Seok, Sang Il (School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • 정민수 (울산과학기술원 에너지및화학공학부) ;
  • 석상일 (울산과학기술원 에너지및화학공학부)
  • Received : 2019.10.22
  • Accepted : 2019.10.29
  • Published : 2020.03.01

Abstract

Inorganic-organic hybrid perovskite solar cells have demonstrated a significant achievement by reaching a certified power conversion efficiency of 25.2% in 2019 as compared to that of 3.8% in 2009. However, organic hole conductors such as PTAA and spiro-OMeTAD are known to be expensive and unstable when they are exposed to operational conditions. In this study, the inorganic hole conductor CuSCN was used to overcome such concerns. The influence of dipropyl sulfide (DPS) and diethyl sulfide (DES) as CuSCN deposition solvents on the underlying perovskite active layer was investigated. DES solvent was observed to be advantageous in terms of CuSCN solubility and mild for the perovskite layer, thereby resulting in a power conversion efficiency of 16.9%.

Keywords

References

  1. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc., 131, 6050 (2009). [DOI: https://doi.org/10.1021/ja809598r]
  2. NERL, Best Research-cell Efficiency Chart, https://www.nrel.gov/pv/cell-efficiency.htmlonference (2019).
  3. Y. Yue, N. T. Salim, Y. Wu, X. Yang, A. Islam, W. Chen, J. Liu, E. Bi, F. Xie, M. Cai, and L. Han, Adv. Mater., 28, 10738 (2016). [DOI: https://doi.org/10.1002/adma.201602822]
  4. J. A. Christians, R.C.M. Fung, and P. V. Kamat, J. Am. Chem. Soc., 136, 758 (2014). [DOI: https://doi.org/10.1021/ja411014k]
  5. G. A. Sepalage, S. Meyer, A. Pascoe, A. D. Scully, F. Huang, U. Bach, Y. B. Cheng, and L. Spiccia, Adv. Funct. Mater., 25, 5650 (2015). [DOI: https://doi.org/10.1002/adfm.201502541]
  6. P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M. K. Nazeeruddin, and M. Gratzel, Nat. Commun., 5, 3834 (2014). [DOI: https://doi.org/10.1038/ncomms4834]
  7. J. W. Jung, C. C. Chueh, and A.K.Y. Jen, Adv. Energy Mater., 5, 1500486 (2015). [DOI: https://doi.org/10.1002/aenm.201500486]
  8. M. Jung, Y. C. Kim, N. J. Jeon, W. S. Yang, J. Seo, J. H. Noh, and S. I. Seok, Chem. Sus. Chem., 9, 2592 (2016). [DOI: https://doi.org/10.1002/cssc.201600957]
  9. I. S. Yang, M. R. Sohn, S. D. Sung, Y. J. Kim, Y. J. Yoo, J. Kim, and W. I. Lee, Nano Energy, 32, 414 (2017). [DOI: https://doi.org/10.1016/j.nanoen.2016.12.059]
  10. J. H. Kim, P. W. Liang, S. T. Williams, N. Cho, C. C. Chueh, M. S. Glaz, D. S. Ginger, and A.K.Y. Jen, Adv. Mater., 27, 695 (2015). [DOI: https://doi.org/10.1002/adma.201404189]
  11. N. Arora, M. I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S. M. Zakeeruddin, and M. Gratzel, Science, 358, 768 (2017). [DOI: https://doi.org/10.1126/science.aam5655]
  12. G. A. Sepalage, S. Meyer, A. R. Pascoe, A. D. Scully, U. Bach, Y. B. Cheng, and L. Spiccia, Nano Energy, 32, 310 (2017). [DOI: https://doi.org/10.1016/j.nanoen.2016.12.043]