DOI QR코드

DOI QR Code

Silicon-Organic Hybrid Solar Cell Using Ag Nanowire/PEDOT:PSS Layer

은 나노와이어/PEDOT:PSS를 이용한 실리콘-유기물 하이브리드 태양전지

  • Kyudong Kim (School of Energy Engineering, Kyungpook National University) ;
  • Sungjin Jo (School of Energy Engineering, Kyungpook National University)
  • 김규동 (경북대학교 에너지공학부) ;
  • 조성진 (경북대학교 에너지공학부)
  • Received : 2024.08.07
  • Accepted : 2024.08.15
  • Published : 2024.08.27

Abstract

Among various organic materials suitable for silicon-based inorganic-organic hybrid solar cells, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has been extensively studied due to its high optical transmittance, high work function, and low bandgap characteristics. The electro-optical properties of PEDOT:PSS have a significant impact on the power conversion efficiency of silicon-organic hybrid solar cells. To enhance the photovoltaic properties of the silicon-organic hybrid solar cells, we developed a method to improve the properties of the PEDOT:PSS film using Ag nanowires (NW) instead of conventional solvent addition methods. The influence of the Ag NW on the electro-optical property of the PEDOT:PSS film and the photovoltaic performance of the silicon-organic hybrid solar cells were investigated. The addition of Ag NW further improved the sheet resistance of the PEDOT:PSS film, enhancing the performance of the silicon-organic hybrid solar cells. The present work using the low sheet resistance PEDOT:PSS layer paves the way to develop simple yet more efficient silicon-organic hybrid solar cells.

Keywords

Acknowledgement

This work was supported by the National Research Foundation (NRF) grant funded by the Korea government (MSIT) (2022R1F1A1074840).

References

  1. M. Sui, Y. Chu and R. Zhang, J. Phys.: Conf. Ser., 1907, 012026 (2021).
  2. M. V. Dambhare, B. Butey and S. V. Moharil, J. Phys.: Conf. Ser., 1913, 012053 (2021).
  3. S. K. Srivastava, P. Singh, M. Yameen, P. Prathap, C. M. S. Rauthan and P. K. Singh, Sol. Energy, 115, 656 (2015).
  4. H. Yao and J. Hou, Angew. Chem., Int. Ed., 61, e202209021 (2022).
  5. J. Y. Kim, J. W. Lee, H. S. Jung, H. Shin and N. G. Park, Chem. Rev., 120, 7867 (2020).
  6. T. Zhang, S. Iqbal, X. Y. Zhang, W. Wu, D. Su and H. L. Zhou, Sol. Energy Mater. Sol. Cells, 204, 110245 (2020).
  7. D. Khang, J. Phys. D: Appl. Phys., 52, 503002 (2019).
  8. S. S. Yoon and D. Y. Khang, Adv. Energy Mater., 8, 1702655 (2018).
  9. J. Kim, J. Jung, D. Lee and J. Joo, Synth. Met., 126, 311 (2002).
  10. G. M. Suppes, B. A. Deore and M. S. Freund, Langmuir, 24, 1064 (2007).
  11. T. Wang, Y. Qi, J. Xu, X. Hu and P. Chen, Appl. Surf. Sci., 250, 188 (2005).
  12. B. Ha and S. Jo, Sci. Rep, 7, 11614 (2017).
  13. J. Y. Oh, M. Shin, J. B. Lee, J. H. Ahn, H. K. Baik and U. Jeong, ACS Appl. Mater. Interfaces, 6, 6954 (2014).
  14. Y. Xia and J. Ouyang, Org. Electron., 13, 1785 (2012).
  15. I. Lee, G. W. Kim, M. Yand and T. S. Kim, ACS Appl. Mater. Interfaces, 8, 302 (2016).