DOI QR코드

DOI QR Code

Improving the Cyclic Stability of Electrochromic Mirrors Composed of Gel Electrolyte

겔 전해질로 구성된 전기변색 거울의 내구성 향상

  • Ji-Hyeong Lee (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Kwang-Mo Kang (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Sang Bum Lee (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Yoon-Chae Nah (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education)
  • 이지형 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 강광모 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 이상범 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 나윤채 (한국기술교육대학교 에너지신소재화학공학부)
  • Received : 2024.07.22
  • Accepted : 2024.08.17
  • Published : 2024.08.27

Abstract

The reversible metal electrodeposition (RME) process is used to prepare electrochromic mirrors with reflective-transparent optical states, by depositing metal particles on transparent conductive substrates. These RME based devices can be used in smart windows to regulate indoor temperatures and light levels, serving dual purposes as lighting elements. Commercialization efforts are focused on achieving large-scale production, long-term durability, and a memory effect that maintains coloration without applied voltage. Enhancing durability has received particular attention, leading to the development of electrochromic mirrors that employ gel electrolytes, which are expected to reduce electrolyte leakage and improve mechanical stability compared to traditional liquid electrolyte devices. The gel electrolytes offer the additional advantage of various colors, by controlling the metal particle size and enabling smoother, denser formations. In this study, we investigated improving the durability of RME devices by adding polyvinyl butyral (PVB) to the liquid electrolyte and optimizing the concentration of PVB. Incorporating 10 % PVB resulted in excellent interfacial properties and superior electrochromic stability, with 92.6 % retention after 1,000 cycles.

Keywords

Acknowledgement

This work was supported by a grant from the National Research Foundation of Korea (NRF), funded by the Korean government (MSIT) (No. 2022R1F1A1062961), and by the "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (MOE) (2021RIS-004).

References

  1. C. G. Granqvist, Thin Solid Films, 564, 1 (2014).
  2. T. S. Hernandez, M. Alshurafa, M. T. Strand, A. L. Yeang, M. G. Danner, C. J. Barile and M. D. McGehee, Joule, 4, 1501 (2020).
  3. A. V. Shchegolkov, E. N. Tugolukov and A. V. Shchegolkov, Adv. Mater. Technol., 2, 66 (2020).
  4. R. A. Patil, R. S. Devan, J. H. Lin, Y. R. Ma, P. S. Patil and Y. Liou, Sol. Energy Mater. Sol. Cells, 112, 91 (2013).
  5. J. Park, K. M. Kang, S. Choi and Y. C. Nah, Ceram. Int., 50, 28762 (2024).
  6. Y. Wei, J. Zhou, J. Zheng and C. Xu, Electrochim. Acta, 166, 277 (2015).
  7. N. Akkurt, S. Pat, R. Mohammadigharehbagh, M. Ozgur, U. Demirkol, A. Olkun and S. Korkmaz, J. Mater. Sci.: Mater. Electron., 31, 9568 (2020).
  8. M. Jamdegni and A. Kaur, J. Electrochem. Soc., 169, 030514 (2022).
  9. J. Zmija and M. J. Malachowski, J. Achiev. Mater. Manuf. Eng., 48, 14 (2011).
  10. X. Tao, D. Liu, J. Yu and H. Cheng, Adv. Opt. Mater., 9, 2001847 (2021).
  11. A. Tsuboi, K. Nakamura and N. Kobayashi, Chem. Mater., 26, 6477 (2014).
  12. A. Tsuboi, K. Nakamura and N. Kobayashi, Adv. Mater., 25, 3197 (2013).
  13. D. He, C. Su, C. Zhao, G. Yan, Z. Zhao and W. Mai, Chem. Eng. J., 438, 135469 (2022).
  14. A. L. S. Eh, M. F. Lin, M. Cui, G. Cai and P. S. Lee, J. Mater. Chem. C, 5, 6547 (2017).
  15. S. Ranjbar, A. H. Salavati, N. Ashari Astani, N. Naseri, N. Davar and M. R. Ejtehadi, ACS Sens., 8, 4281 (2023).
  16. S. Ranjbar, M. A. F. Nejad, C. Parolo, S. Shahrokhian and A. Merkoci, Anal. Chem., 91, 14960 (2019).
  17. M. A. Behbahani, M. Ranjbar, P. Kameli and H. Salamati, Sens. Actuators, B, 188, 127 (2013).
  18. C. Wang, Z. Wang, Y. Ren, X. Hou and F. Yan, ACS Sustainable Chem. Eng., 8, 5050 (2020).
  19. C. Su, Z. Zhao, D. He, H. Song, C. Zhao and W. Mai, Nano Energy, 111, 108396 (2023).
  20. S. Kimura, K. Nakamura and N. Kobayashi, Sol. Energy Mater. Sol. Cells, 205, 110247 (2020).
  21. S. Choi, J. Kim and C. S. Lee, Sol. Energy Mater. Sol. Cells, 264, 112599 (2024).
  22. A. L. S. Eh, J. Chen, S. H. Yu, G. Thangavel, X. Zhou, G. Cai, S. Li, D. H. C. Chau and P. S. Lee, Adv. Sci., 7, 1903198 (2020).
  23. A. Kraft, M. Rottmann and K. H. Heckner, Sol. Energy Mater. Sol. Cells, 90, 469 (2006).
  24. S. M. Cho, S. Kim, T. Y. Kim, C. S. Ah, J. Song, S. H. Cheon, J. Y. Kim, H. Ryu, Y. H. Kim, C. S. Hwang and J. I. Lee, Sol. Energy Mater. Sol. Cells, 179, 161 (2018).
  25. X. Hou, Z. Wang, Z. Zheng, J. Guo, Z. Sun and F. Yan, ACS Appl. Mater. Interfaces, 11, 20417 (2019).
  26. T. Theivasanthi and M. Alagar, arXiv:1111.0260 (2011).
  27. G. B. Hoflund, Z. F. Hazos and G. N. Salaita, Phys. Rev. B, 62, 11126 (2000).
  28. G. B. Hoflund, J. F. Weaver and W. S. Epling, Surf. Sci. Spectra, 3, 151 (1994).
  29. Y. Uchimoto, K. Amezawa, T. Furushita, M. Wakihara and I. Taniguchi, Solid State Ionics, 176, 2377 (2005).
  30. Y. J. Park, K. M. Kang, J. H. Kang, S. H. Han and H. S. Jang, Appl. Surf. Sci., 582, 152431 (2022).
  31. W. Zhang, H. Li and A. Y. Elezzabi, Adv. Mater. Interfaces, 9, 2200021 (2022).