• Title/Summary/Keyword: Inlet-air temperature

Search Result 674, Processing Time 0.027 seconds

The Figures for the Alstom Power Pressurized Fluidized Bed Combustion Combined Cycle System (Alstom Power의 가압유동층 복합발전 시스템 특성)

  • 이윤경;주용진;김종진
    • Journal of Energy Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • Pressurized fluidized bed combustion unit is operated at pressures of 1~1.5 MPa with combustion temperatures of 850~87$0^{\circ}C$. The pressurized coal combustion system heats steam, in conventional heat transfer tubing, and produces a hot gas supplied to a gas turbine. Gas cleaning is a vital aspect of the system, as is the ability of the turbine to cope with some residual solids. The need to pressurize the feed coal, limestone and combustion air, and to depressurize the flue gases and the ash removal system introduces some significant operating complications. The proportion of power coming from the steam : gas turbines is approximately 80:20%. Pressurized fluidized bed combustion and generation by the combined cycle route involves unique control considerations, as the combustor and gas turbine have to be properly matched through the whole operating range. The gas turbines are rather special, in that the maximum gas temperature available from the FBC is limited by ash fusion characteristics. As no ash softening should take place, the maximum gas temperature is around 90$0^{\circ}C$. As a result a high pressure ratio gas turbine with compression intercooling is used. This is to offset the effects of the relatively low temperature at the turbine inlet.

Flow Characteristics of R600a in an Adiabatic Capillary Tube (단열 모세관내 R600a의 유동 특성)

  • Ku, Hak-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.449-454
    • /
    • 2010
  • In this paper, flow characteristics of R600a in an adiabatic capillary tube were investigated employing the homogeneous flow model. The model is based on fundamental equations of mass, energy and momentum which are solved simultaneously. Two friction factors(Churchill) and viscosity(McAdams) are comparatively used to investigate the flow characteristics. Thermodynamic and transport properties of R600a are calculated employing EES property code. Flow characteristics analysis of R600a in an adiabatic capillary tube is presented to offer the basic design data for the operating parameters. The operating parameters considered in this study include condensation temperature, evaporation temperature, subcooling degree and inner diameter tube of the adiabatic capillary tube. The main results were summarized as follows: condensation and evaporation temperature, inlet subcooling degree and inner diameter tube of an adiabatic capillary tube using R600a have an effect on length of an adiabatic capillary tube. The length of an adiabatic capillary tube using R600a is expressed to the correlation shown in Eq. (15).

Rotordynamic Performance Analysis and Operation Test of a Power Turbine for the Super critical CO2 Cycle Application (초임계 CO2 발전용 파워 터빈의 회전체 동역학 해석 및 구동 시험)

  • Lee, Donghyun;Kim, Byungok;Sun, Kyungho;Lim, Hyungsoo
    • Tribology and Lubricants
    • /
    • v.33 no.1
    • /
    • pp.9-14
    • /
    • 2017
  • This paper presents a rotordynamic analysis and the operation of a power turbine applied to a 250 kW super-critical $CO_2$ cycle. The power turbine consists of a turbine wheel and a shaft supported by two fluid film bearings. We use a tilting pad bearing for the power turbine owing to the high speed operation, and employ copper backing pads to improve the thermal management of the bearing. We conduct a rotordynamic analysis based on the design parameters of the power turbine. The dynamic coefficients of the tilting pad bearings were calculated based on the iso-thermal lubrication theory and turbine wheel was modeled as equivalent inertia. The predicted Cambell diagram showed that there are two critical speeds, namely the conical and bending critical speeds under the rated speed. However, the unbalance response prediction showed that vibration levels are controlled within 10 mm for all speed ranges owing to the high damping ratio of the modes. Additionally, the predicted logarithmic decrement indicates that there is no unstable mode. The power turbine uses compressed air at a temperature of $250^{\circ}C$ in its operation, and we monitor the shaft vibration and temperature of the lubricant during the test. In the steady state, we record a temperature rise of $40^{\circ}C$ between the inlet and outlet lubricant and the measured shaft vibration shows good agreement with the prediction.

Removal of Carbon Monoxide from Anthracite Flue Gas by Catalytic Oxidation (I) (촉매반응에 의한 연탄 연소가스로부터 일산화탄소의 제거 (제1보))

  • Chung Ki Ho;Lee, Won Kook
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.431-437
    • /
    • 1976
  • On the condition of adequate air supply, complete removal of carbon monoxide,occurred above $650^{\circ}C$. Using catalysts, the oxidation of carbon monoxide occurred at lower temperatures; on both $MnO_2 \;and\;30%\;MnO_2-70%\;CuO\;at\;250{\circ}C,\;on\;CuO\;at\;450{\circ}C,\;on\;50%\;MnO_2-50%\;CuO\;at\;200{\circ}C,\;and\;on\;70%\;MnO_2-30%\;CuO\;at\;180{\circ}C$. Manganese dioxide (p-type) showed higher activity than cupric oxide (n-type) and a catalyst consisting of 60% $MnO_2-40%$ CuO had the highest activity of all the $MnO_2$-CuO mixture. Over the range of transitional temperature, carbon monoxide removal efficiency decreased linearly with increasing inlet carbon monoxide concentration while temperature was fixed. Residence time of gases in the catalytic reactor, in the range of 0.9 to 1.8 seconds, gave no effect on carbon monoxide conversion.

  • PDF

Experimental Study of Power Generation Performance of Small-Scale Thermoelectric System (소규모 산업 폐열회수용 열전발전시스템의 출력 특성에 관한 실험적 연구)

  • Chung, Jae-Hoon;Kim, Woo-Chul;Lee, Jin-Ho;Yu, Tae-U
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.383-390
    • /
    • 2010
  • In this study, a thermoelectric power generation system was constructed for a waste-heat recovery. Thermoelectric modules were attached to a stainless steel duct, and a hot air blower was set such that it faced the duct inlet. We found that to achieve the maximum power out of the system, the temperature in the hot side of the thermoelectric module should be uniform. The optimum compressive pressure exerted on the module was observed. Further, the thermoelectric power performance was evaluated using the heat sink attached to the cold side of the thermoelectric module. In particular, when using a natural-convection heat sink, the power output difference is approximately five times.

AUTOMOBILE UNDERHOOD THERMAL AND AIR FLOW SIMULATION USING CFD (전산유체역학을 이용한 자동차 엔진룸의 열 및 유동장 해석)

  • Oh, K.T.;Kim, J.H.;Lee, S.W.;Kim, Y.S.;Ha, J.W.;Kang, W.K.
    • Journal of computational fluids engineering
    • /
    • v.12 no.1
    • /
    • pp.22-27
    • /
    • 2007
  • Automobile underhood thermal and airflow simulation h α s been performed by using a commercial CFD program, FLUENT. To implement the radiation heat transfer effect to the underhood thermal and flow field, Discrete Ordinates Method(DOM) was used. The cooling fan was modeled by using the Multiple Reference Frame(MRF) technique. For the implementation of the heat exchangers, such as radiator and condenser, which are located in the front side of vehicle, the effectiveness-NTU model was used. The pressure drop throughout the heat exchangers was modeled as Porous media. For the validation of the current computational method, the coolant temperature at the inlet port of the radiator was compared with experimental data, and less than 3% error was observed. Finally, the composed model was used for the cooling fan spec determination process in the development of a new vehicle, and the results showed that the current CFD method could be successfully applied to the vehicle development process.

The Characteristics of Swirl Spray Combustion in Gas Turbine Combustor (가스터빈 연소기내의 선회분무연소 특성)

  • Hong, Jeong-Gu;Kim, Hyeok-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2721-2730
    • /
    • 1996
  • The present study conducted experimental study of spray combustion to investigate the effect of the inlet conditions of fuel and air on the flame structure, the flame stability and the characteristics of emission in the can-type model of a gas turbine combustor. In the experiment, the diameter of fuel droplet was measured using Malvern particle size analyser and temperatures in the combustion chamber were measured with R-type shielded thermocouple. In addition, flame structure was taken picture with camera and analysed. Gas analyser was also used to analyse the concentration of each components of exhausting gas. The experimental results showed that the flame condition was optimal with swirl number, 0.63 and equivalence ratio, 0.5 for controlling the flame stability, the combustion temperature and the NOx concentration. The present study concluded that both the flame structure and the emission formation were strongly affected by the swirl intensity, which selection was found as an important parameter for either stabilizing flame or lowering the quantity of NOx.

Discussion on the Practical Use of CFD for Grate Type Waste Incinerators (회격자식 소각로의 열유동 해석과 결과 분석에 대한 고찰)

  • Ryu C.;Choi S.
    • Journal of computational fluids engineering
    • /
    • v.7 no.3
    • /
    • pp.17-26
    • /
    • 2002
  • Computational fluid dynamic(CFD) analysis has been frequently applied to the waste incinerators to understand the flow performance for various design and operating parameters. Since the computational modeling inevitably requires many simplifications and complicated sub-models, validity of the results should be carefully evaluated. In this study, major computational modeling and procedure of usual simulation methods for the grate-type waste incinerators were assessed. Usual simulation method does not explicitly incorporate the waste combustion, simply by assuming the combustion gas properties from the waste bed which is treated as an inlet plane. However, effect of this arbitrary assumption on the overall flow pattern is not significant, since the flow pattern is dominated by strong pattern of jet flows of the secondary air. Thus, this method is valid in understanding the effect of flow-related parameters. In analyzing the results, deriving conclusive information directly from temperature and chemical species concentration should be avoided, since the model prediction for the gaseous reaction and the radiation reveals significant discrepancies against the actual phenomena. Use of quantitative measures such as residence time is very efficient in evaluating the flow performance.

The Experimental Study on the Performance of Two-Phase Loop Thermosyphone System for Electronic Equipment Cooling (전자장비 냉각을 위한 2상 순환형 써모사이폰 시스템의 성능에 대한 실험적 연구)

  • Kang, In-Seak;Choi, Dong-Kyu;Kim, Taig-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.415-424
    • /
    • 2004
  • Cooling the electronic equipment is one of the major focal points of the design process and the key to successful product launch. The two-phase loop thermosyphone which is a good candidate among many available options was investigated fur cooling of the high power amplifiers. The system is composed of evaporator which contains 6 parallel cold plates, fan cooled condenser, gas-liquid separator, and interconnecting tubes. Experiments were performed for several refrigerant charging values, hs and as a experiment result, the optimum charging value fur this system was proposed. In order to optimize the system design, the operating cycle pressure and inlet/outlet temperatures of evaporator and condenser are measured and analyzed. The effect of the three parameters such as flow rate and temperature of condenser cooling air, and thermal load on the evaporator are investigated. The lower the operating pressure and the cycle temperatures are also better to prevent the leakage of the system. The system invesigated in this paper can be directly used for cooling of a real unmanned wireless communication station.

Burner combustion characteristics of hybrid type water mixing emulsion fuel (하이브리드형 물혼합 에멀젼 연료의 버너 특성)

  • Kim, Cheol-Jeong;Kim, Dong-Kwon;Park, Kweon-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.308-315
    • /
    • 2013
  • Water emulsion technology has the problem of unstable combustion due to the rapid separation of water. To solve the problem, a hybrid mixing device was developed. The device attached on the burner was tested. As a result, the fuel consumption reduced to 12% in the similar condition of exhaust emissions and flame temperature, and 45.5%, 98.5% and 97.2% of NOx, CO, and smoke were reduced at the same inlet air and fuel flow rate.