DOI QR코드

DOI QR Code

Experimental Study of Power Generation Performance of Small-Scale Thermoelectric System

소규모 산업 폐열회수용 열전발전시스템의 출력 특성에 관한 실험적 연구

  • 정재훈 (연세대학교 기계공학과) ;
  • 김우철 (연세대학교 기계공학과) ;
  • 이진호 (연세대학교 기계공학과) ;
  • 유태우 (한국생산기술연구원 산업설비팀)
  • Published : 2010.04.01

Abstract

In this study, a thermoelectric power generation system was constructed for a waste-heat recovery. Thermoelectric modules were attached to a stainless steel duct, and a hot air blower was set such that it faced the duct inlet. We found that to achieve the maximum power out of the system, the temperature in the hot side of the thermoelectric module should be uniform. The optimum compressive pressure exerted on the module was observed. Further, the thermoelectric power performance was evaluated using the heat sink attached to the cold side of the thermoelectric module. In particular, when using a natural-convection heat sink, the power output difference is approximately five times.

본 연구에서는 폐열 회수를 위한 열전 발전 시스템을 구성하였다. 열전 모듈은 스테인레스 스틸덕트 내부에 부착되고, 뜨거운 공기를 불어넣는 장치가 덕트의 입구에 마주한 형태를 취하였다. 이 때 고온부의 온도가 균일한 상태에서 낼 수 있는 최대 파워를 구해내었다. 결과적으로 모듈에 가해지는 최적화된 압력이 있었다. 또한 열전 발전의 성능을 열전 모듈의 저온부의 열 싱크에 의하여 결정되었다. 자연대류 형식의 열 싱크에서 낼 수 있는 파워가 5배 가량 차이가 났다.

Keywords

References

  1. Rowe, D. M., 2005, Thermoelectrics Handbook: Macro to Nano, CRC Press.
  2. Esartea, J., Min, G., and Rowe, D. M., 2001, "Modelling Heat Exchangers for Thermoelectric Generators," J. Power Sources, Vol. 93, pp. 72-76. https://doi.org/10.1016/S0378-7753(00)00566-8
  3. Nagao, K., Nagai, A., Fujii, T., Sakurai, T., Fujimoto, M., and Furue, T., Hayashida, T., Imaizumi, Y., Inoue, T., 1998, "Design of Thermoelectric Generation System Utilizing the Exhaust Gas of Internal-Combustion Power Plant," 17th Int. Conf. on Thermoelectrics, pp. 468-472.
  4. Woo B., Lee, H., and Seo, C., 2002, "Characteristic of Electric Generation along Water Flow on Thermoelectric Generator with Hot Water," Trans. of the KSME(B), Vol. 26, pp. 1333-1340.
  5. Park, T., 2001, Research on the Economic Waste Heat Recovery Technology using Thermoelectric Generation, Korean Institute of Energy Research.
  6. Leavitt, F. A., Elsner N. B., and Bass, J. C. , "Use, application and testing of Hi-Z thermoelectric modules," Hi-Z website brochure, pp. 1-8.
  7. Crane, D. T., and Jackson, G. S., 2004, "Optimization of Cross Flow Heat Exchangers for Thermoelectric Waste Heat Recovery," Energy Conversion Management, Vol. 45, pp. 1565-1582.
  8. Nuwayhid, R. Y., Shihadeh, A., Ghaddar, N., 2005, "Development and Testing of a Domestic Woodstove Thermoelectric Generator with Natural Convection Cooling," Energy Conversion Management, Vol. 46, pp. 1631-1643.
  9. Ikoma, K., Munekiyo, M., Furuya, K., Kobayashi, M., Izumi, T. and Shinohara, K., 1998, "Thermo- electric Module and Generator for Gasoline Engine Vehicles," 17th Int. Conf. on Thermoelectrics, pp. 464-467.
  10. Ota, T., Tokunaga, C. and Fujita, K., 2005, "Development of Thermoelectric Power Generation System for Industrial Furnaces," 24th Int. Conf. on Thermoelectrics, pp. 323-326.

Cited by

  1. Experimental Study on Thermoelectric Generator Performance for Waste Heat Recovery in Vehicles vol.26, pp.6, 2014, https://doi.org/10.6110/KJACR.2014.26.6.287