• Title/Summary/Keyword: Ink-jet technology

Search Result 108, Processing Time 0.034 seconds

Fabricating Using Nano-particulates with Direct Write Technology

  • Sears, James;Colvin, Jacob;Carter, Michael
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.372-373
    • /
    • 2006
  • Modern business trends call for miniaturization of electronic systems. One of the major impedances in this miniaturization is the conductive and inductive components in chips and circuit boards. Direct Write Technology can write these soft magnetic materials, thus allowing for further miniaturization of inductor devices. Another obstacle in electronics fabrication is the size limitations of thick screen-printing and the material limitations in ink jet printing. Direct Write Technologies address both of these limitations by providing feature sizes less than 20 microns with a wide range of materials possibilities. A discussion of the application of these nano-particulate materials by Direct Write Technologies will be presented.

  • PDF

Etch resist patterning of printed circuit board by ink jet printing technology (잉크젯 인쇄기술을 이용한 인쇄회로기판의 에칭 레지스터 패터닝)

  • Seo, Shang-Hoon;Lee, Ro-Woon;Kim, Yong-Sik;Kim, Tae-Gu;Park, Sung-Jun;Yun, Kwan-Soo;Park, Jae-Chan;Jeong, Kyoung-Jin;Joung, Jae-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.108-108
    • /
    • 2007
  • Inkjet printing is a non-contact and direct writing associated with a computer. In the industrial field, there have been many efforts to utilize the inkjet printing as a new way of manufacturing, especially for electronic devices. The etching resist used in this process is an organic polymer which becomes solidified when exposed to ultraviolet lights and has high viscosity of 300 cPs at ambient temperature. A piezoelectric-driven ink jet printhead is used to dispense $20-40\;{\mu}m$ diameter droplets onto the copper substrate to prevent subsequent etching. In this study, factors affecting the pattern formation such as printing resolution, jetting property, adhesion strength, etching and strip mechanism, UV pinning energy have been investigated. As a result, microscale Etch resist patterning of printed circuit board with tens of ${\mu}m$ high have been fabricated.

  • PDF

A Study on the Development of SFF System based on 3DP Process (3차원 프린팅(3DP) 공정을 기반으로 한 임의형상제작(SFF) 시스템 개발에 관한 연구)

  • Lee Won-Hee;Kim Jung-Su;Lee Min-Cheol;Kim Dong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.168-176
    • /
    • 2006
  • Nowadays, Three dimensional printing (3DP) technique that is one of solid freeform fabrication (SFF) technology has been notable issue, and has been applied by various fields. The SFF system can fabricate three dimensional objects of solid freeform with high speed and low cost using ink jet printing technology. In this research, a SFF system to analyze 3DP process technology is developed. We applied sliding mode control with sliding perturbation observer (SMCSPO) algorithm and minimized position error to the developed SFF system. We analyzed and optimized process variables such as jetted volume, layer thickness, powder bed and so on experimentally. Also. the dimensional error of a developed SFF system is evaluated. Finally, the feasibility of application to bio manufacturing is presented through successful fabrication of teeth and cranium model.

High resolution flexible e-paper driven by printed OTFT

  • Hu, Tarng-Shiang;Wang, Yi-Kai;Peng, Yu-Rung;Yang, Tsung-Hua;Chiang, Ko-Yu;Lo, Po-Yuan;Chang, Chih-Hao;Hsu, Hsin-Yun;Chou, Chun-Cheng;Hsieh, Yen-Min;Liu, Chueh-Wen;Hu, Jupiter
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.421-427
    • /
    • 2009
  • We successfully fabricated 4.7-inch organic thin film transistors array with $640{\times}480$ pixels on flexible substrate. All the processes were done by photolithography, spin coating and ink-jet printing. The OTFT-Electrophoretic (EP) pixel structure, based on a top gate OTFT, was fabricated. The mobility, ON/OFF ratio, subthreshold swing and threshold voltage of OTFT on flexible substrate are: 0.01 ^2/V-s, 1.3 V/dec, 10E5 and -3.5 V. After laminated the EP media on OTFT array, a panel of 4.7-inch $640{\times}480$ OTFT-EPD was fabricated. All of process temperature in OTFT-EPD is lower than $150^{\circ}C$. The pixel size in our panel is $150{\mu}m{\times}150{\mu}m$, and the aperture ratio is 50 %. The OTFT channel length and width is 20 um and 200um, respectively. We also used OTFT to drive EP media successfully. The operation voltages that are used on the gate bias are -30 V during the row data selection and the gate bias are 0 V during the row data hold time. The data voltages that are used on the source bias are -20 V, 0 V, and 20 V during display media operation.

  • PDF

3D Bioprinting Technology in Biochemical Engineering (바이오화학공학에서 3D 바이오프린팅 기술)

  • Eom, Tae Yoon
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.285-292
    • /
    • 2016
  • Three-dimensional (3D) printing is driving major innovation in various areas including engineering, manufacturing, art, education and biosciences such as biochemical engineering, tissue engineering and regenerative medicine. Recent advances have enabled 3D printing of biocompatible materials, cells and supporting components into complex 3D functional tissues. Compared with non-biological printing, 3D bioprinting involves additional complexities which require the integration of technologies from the fields of biochemical engineering, biomaterial sciences, cell biology, physics, pharmaceutics and medical science.

Investigation of Internal Flow Fields of Evaporating of Binary Mixture Droplets (증발하는 이성분혼합물 액적의 유동장 해석)

  • Kim, Hyoungsoo
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.2
    • /
    • pp.21-25
    • /
    • 2017
  • If a liquid droplet evaporates on a solid substrate, when it completely dries, it leaves a peculiar pattern, which depends on the composition of the liquid. Not only a single component liquid but also complex liquids are studied for a different purpose. In particular, a binary mixture droplet has been widely studied and used for an ink-jet printing technology. In this study, we focus on investigating to visualize the internal flow field of an ethanol-water mixture by varying a concentration ratio between two liquids. We measure the in-plane velocity vector fields and vorticities. We believe that this fundamental study about the internal flow field provides a basic idea to understand the dried pattern of the binary mixture droplet.

A Deburring Characteristics of Small Punching Holes using Micro Press (마이크로 프레스에 의한 미세 펀칭 홀의 디버링 특성)

  • 윤종학;안병운;박성준
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.61-67
    • /
    • 2004
  • In micro hole punching process the burr occurs inevitably, but the burr must be minimized in order to improve the quality and accuracy of the product. In this study, magnetic field-assisted polishing technique is applied to remove the burr which exists in nozzles for ink-jet printer head and proved to be a feasible for deburring by experiment. The deburring characteristics of sheet metals was investigated changing with polishing time and magnetic abrasive size. After the deburring, the burr size has remarkably reduced and roundness of the hole also has improved.

A Study on the Characteristics of Deburring for Micro Punching Holes (미세 펀칭 구멍의 디버링 특성에 관한 연구)

  • 안병운;최용수;박성준;윤종학
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.329-333
    • /
    • 2003
  • In micro hole punching process the burr occurs inevitably, but the burr must be minimized in order to improve the quality and accuracy of the product. In this study, magnetic field assisted polishing technique is applied to remove the burr which exists in nozzles for ink-jet printer head and proved to be a feasible for deburring by experiment. The deburring characteristics of sheet metals was investigated changing with polishing time. After the deburring, the burr size has remarkably reduced and roundness of the hole also has improved.

  • PDF

Dielectric Properties of ink-Jet printed $Al_2O_3$-resin Hybrid Films

  • Hwang, Myung-Sung;Jang, Hun-Woo;Kim, Ji-Hoon;Kim, Hyo-Tae;Yoon, Young-Joon;Kim, Jong-Hee;Moon, Joo-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.81-81
    • /
    • 2009
  • Non-sintered Alumina films were fabricated via inkjet printing processes without a high temperature sintering process. The packing density of these inkjet-printed alumina films measured around 60%. Polymer resin was infiltrated thru these non-sintered films in order to fill out the 40% of voids constituting the rest of the inkjet-printed films. The concept of inkjet-printed Alumina-Resin hybrid materials was designed in order to be applicable to the ceramic package substrates for 3D-system module integration which may possibly substitute LTCC-based 3D module integration. So, the dielectric properties of these inkjet-printed $Al_2O_3$ hybridmaterialsareofourgreatinterest. We have measured dielectric constant and dissipation factor of the inkjet-printed $Al_2O_3$-resinhybridfilmsbyvaryingtheamountofresininfiltratedthruthe$Al_2O_3$films.

  • PDF

Additive Manufacturing of Various Ceramic Composition Using Inkjet Printing Process (잉크젯 프린팅을 이용한 연속 조성 세라믹 화합물 구조체 형성)

  • Park, Jae-Hyeon;Choi, Jung-Hoon;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.30 no.11
    • /
    • pp.627-635
    • /
    • 2020
  • 3D printing technology is a processing technology in which 3D structures are formed by fabricating multiple 2D layers of materials based on 3D designed digital data and stacking them layer by layer. Although layers are stacked using inkjet printing to release various materials, it is still rare for research to successfully form a product as an additive manufacture of multi-materials. In this study, dispersion conditions are optimized by adding a dispersant to an acrylic monomer suitable for inkjet printing using Co3O4 and Al2O3. 3D structures having continuous composition composed of a different ceramic material are manufactured by printing using two UV curable ceramic inks whose optimization is advanced. After the heat treatment, the produced structure is checked for the formation and color of the desired crystals by comparing the crystalline analysis according to the characteristics of each part of the structure with ceramic pigments made by solid phase synthesis method.