DOI QR코드

DOI QR Code

3D Bioprinting Technology in Biochemical Engineering

바이오화학공학에서 3D 바이오프린팅 기술

  • Eom, Tae Yoon (Korea Institute of Science and Technology Information)
  • 엄태윤 (한국과학기술정보연구원)
  • Received : 2015.10.08
  • Accepted : 2016.02.05
  • Published : 2016.06.01

Abstract

Three-dimensional (3D) printing is driving major innovation in various areas including engineering, manufacturing, art, education and biosciences such as biochemical engineering, tissue engineering and regenerative medicine. Recent advances have enabled 3D printing of biocompatible materials, cells and supporting components into complex 3D functional tissues. Compared with non-biological printing, 3D bioprinting involves additional complexities which require the integration of technologies from the fields of biochemical engineering, biomaterial sciences, cell biology, physics, pharmaceutics and medical science.

삼차원 프린팅(3D printing) 기술은 공학, 제조업, 교육, 예술, 그리고 바이오의학 같은 다양한 분야에 활용되고 있는 혁신적 기술이다. 프린팅 기술, 재료/생화학물질을 포함한 최근 기술의 진보는 생체적합성 물질, 세포, 지지체 성분의 3D 프린팅으로 복잡한 3D 기능성 조직과 장기를 제작할 수 있는 가능성을 보여주고 있다. 3D 바이오프린팅 기술은 신약 개발, 독성 연구를 위한 조직 모델의 제작에도 활용되고 있다. 3D 바이오프린팅 기술은 공학, 생체재료과학, 세포생물학, 생화학, 물리, 의학 같은 분야의 통섭이 필요한 연구 분야이다.

Keywords

References

  1. Hull, C. W., "Apparatus for Production of Three-dimensional Objects by Stereolithography," U. S. Patent 4575330A(1986).
  2. Shimizu, T. S., Le Novere, N., Levin, M. D., Beavil, A. J., Sutton, B. J. and Bray, D., "Molecular Model of a Lattice of Signalling Proteins Involved in Bacterial Chemotaxis," Nature Cell Biology, 2, 792-796(2000). https://doi.org/10.1038/35041030
  3. Symes, M. D., Kitson, P. J., Yan, J., Richmond, C. J., Cooper, G. J. T., Bowman, R. W., Vilbrandt, T. and Cronin, L., "Integrated 3D-printed Reactionware for Chemical Synthesis and Analysis," Nature Chemistry, 4, 349-354(2012). https://doi.org/10.1038/nchem.1313
  4. Nakamura, M., Iwanaga, S., Henmi, C., Arai, K. and Nishiyama, Y., "Biomatrices and Biomaterials for Future Developments of Bioprinting and Biofabrication," Biofabrication, 2, 014110(2010). https://doi.org/10.1088/1758-5082/2/1/014110
  5. Griffith, L. G. and Naughton, G., "Tissue Engineering: Current Challenges and Expanding Opportunities," Science, 295, 1009-1016(2002). https://doi.org/10.1126/science.1069210
  6. Mikos, A. G. and Temenoff, J. S., "Formation of Highly Porous Biodegradable Scaffolds for Tissue Engineering," Electron. J. Biotechnol., 3, 114-119(2000).
  7. Tsang, V. L. and Bhatia, S. N., "Three-dimensional Tissue Fabrication," Advanced Drug Delivery Reviews, 56(11), 1635-1647 (2004). https://doi.org/10.1016/j.addr.2004.05.001
  8. Derby, B., "Printing and Prototyping of Tissues and Scaffolds," Science, 338, 921-926(2012). https://doi.org/10.1126/science.1226340
  9. Starly, B. and Shirwaiker, R., "3D Bioprinting Techniques," In: Zhang, L. G., Fisher, J. P. and Lerong, K. W. (eds.) 3D Bioprinting and Nanotechnology in Tissue Engineering and Regenerative Medicine, Academic Press, 57-77(2015).
  10. Derby, B., "Bioprinting: Inkjet Printing Proteins and Hybrid Cell-Containing Materials and Structures," Journal of Materials Chemistry, 18, 5717-5721(2008). https://doi.org/10.1039/b807560c
  11. Okamoto, T., Suzuki T. and Yamamoto, N., "Microarray Fabrication with Covalent Attachment of DNA," Nature Biotechnology, 18, 438-441(2000). https://doi.org/10.1038/74507
  12. Delaney, Jr., J. T., Smith, P. J. and Schubert, U. S., "Inkjet Printing of Proteins," Soft Matters, 5, 4866-4877(2009). https://doi.org/10.1039/b909878j
  13. Cui, X., Boland, T., D'Lima, D. D. and Lotz, M. K., "Thermal Inkjet Printing in Tissue Engineering and Regenerative Medicine," Recent Patents on Drug Delivery and Formulation, 6(2), 149-155(2012). https://doi.org/10.2174/187221112800672949
  14. Goldmann, T. and Gonzalez, J. S., "DNA-printing: Utilization of a Standard Inkjet Printer for the Transfer of Nucleic Acids to Solid Supports," Journal of Biochemical and Biophysical Methods, 42, 105-110(2000). https://doi.org/10.1016/S0165-022X(99)00049-4
  15. Cui, X., Dean, D., Ruggeri, A. M. and Boland, T., "Cell Damage Evaluation of Thermal Inkjet Printed Chinese Hamster Ovary Cells," Biotechnology and Bioengineering, 106, 963-969(2010). https://doi.org/10.1002/bit.22762
  16. Tekin, E., Smith, P. J. and Schubert, U. S., "Inkjet Printing as a Deposition and Patterning Tool for Polymers and Inorganic Particles," Soft Matters, 4, 703-713(2008). https://doi.org/10.1039/b711984d
  17. Demirci, U. and Montesano, G., "Single Cell Epitaxy by Acoustic Picolitre Droplets," Lab on a Chip, 7, 1139-1145(2007). https://doi.org/10.1039/b704965j
  18. Kim, J. D., Choi, J. S., Kim, B. S., Choi, Y. C. and Cho, Y. W., "Piezoelectric Inkjet Printing of Polymers: Stem Cell Patterning on Polymer Substrates," Polymer, 51, 2147-2154(2010). https://doi.org/10.1016/j.polymer.2010.03.038
  19. Saunders, R. E., Bosworth, L., Gough, J. E. and Derby, B., "Delivery of Human Fibroblast Cells by Piezoelectric drop-on-demand Inkjet Printing," Biomaterials, 29, 193-203(2008). https://doi.org/10.1016/j.biomaterials.2007.09.032
  20. Murphy, S. V., Skardal, A. and Atala, A., "Evaluation of Hydrogels for Bio-printing Applications," Journal of Biomedical Materials Research A, 101, 272-284(2013).
  21. Khalil, S. and Sun, W., "Biopolymer Deposition for Freeform Fabrication of Hydrogel Tissue Constructs," Material Science and Engineering C, 27, 469-478(2007). https://doi.org/10.1016/j.msec.2006.05.023
  22. Smith, C. M., Stone, A. L., Parkhill, R. L., Stewart, R. L., Simpkins, M. W., Kachurin, A. M., Warren, W. L. and Williams, S. K., "Three-dimensional Bioassembly Tool for Generating Viable Tissue-engineered Constructs," Tissue Engineering, 10, 1566-1576 (2004). https://doi.org/10.1089/ten.2004.10.1566
  23. Jones, N., "Science in Three Dimensions: the Print Revolution," Nature, 487, 22-23(2012). https://doi.org/10.1038/487022a
  24. Chang, C. C., Boland, E. D., Williams, S. K. and Hoying, J. B., "Direct-writing Bioprinting Three-dimensional Biohybrid Systems for Future Regenerative Therapy," J. Biomed. Mater. Res. B Appl. Biomater., 98, 106-170(2011).
  25. Fedorovich, N. E., Swennen, I., Girones, J., Moroni, L., van Blitterswijk, C. A., Schacht, E., Alblas, J. and Dhert, W. J. A., "Evaluation of Photocrosslinked Lutrol Hydrogel for Tissue Printing Applications," Biomacromolecules 10, 1689-1695(2009). https://doi.org/10.1021/bm801463q
  26. Chang, R., Nam, J. and Sun, W., "Effects of Dispensing Pressure and Nozzle Diameter on Cell Survival from Solid Freeform Fabrication-based Direct Cell Writing," Tissue Eng. Part A, 14, 41-48(2008).
  27. Jakab, K., Damon, B., Neagu, A., Kachurin, A. and Forgacs, G., "Three-dimensional Tissue Constructs Built by Bioprinting," Biorheology, 43, 509-513(2006).
  28. Visser, J., Peters, B., Burger, T. J., Boomstra, J., Dhert, W. J. A., Michels, F. P. W. and Malda, J., "Biofabrication of Multi-material Anatomically Shaped Tissue Constructs," Biofabrication, 5, 035007(2013). https://doi.org/10.1088/1758-5082/5/3/035007
  29. Park, S. A., Lee, S. H. and Kim, W. D., "Fabrication of Porous Polycaprolactone/hydroxyapatite(PCL/HA) Blend Scaffold Using a 3D Plotting System for Bone Tissue Engineering," Bioprocess and Biosystem Engineering, 34(4), 505-513(2011). https://doi.org/10.1007/s00449-010-0499-2
  30. Schuurman, W., Levett, P. A., Pot, M. W., vam Weeren, P. R., Dhert, W. J. A., Hutmacher, D. W., Melchels, F. P. W., Klein, T. J. and Malda, J., "Gelatin-methacrylamide Hydrogels as Potential Biomaterials for Fabrication of Tissue-engineered Cartilage Constructs," Macromolecular Bioscience, 13, 551-561(2013). https://doi.org/10.1002/mabi.201200471
  31. Smith, C. M., Christian, J. J., Warren, W. L. and Williams, S. K., "Characterizing Environmental Factors that Impact the Viability of Tissue-engineered Constructs Fabricated by a Direct Write Bioassembly Tool," Tissue Engineering, 13, 373-383(2007). https://doi.org/10.1089/ten.2006.0101
  32. Guvendiren, M., Lu, H. D. and Burdick, J. A., "Shear-thinning Hydrogels for Biomedical Applications," Soft Matters, 8, 260-272(2012). https://doi.org/10.1039/C1SM06513K
  33. Mironov, V., Kasyanov, V. and Markwald, R. R., "Organ Printing from Bioprinter to Organ Biofabrication Line," Current Opinions in Biotechnology, 22, 667-673(2011). https://doi.org/10.1016/j.copbio.2011.02.006
  34. Marga, F., J, K., Khatiwala, C., Shepherd, B., Dorfman, S., Hubbard, B., Colbert, S. and Forgacs, G., "Toward Engineering Functional Organ Modules by Additive Manufacturing," Biofabrication, 4, 022001(2012). https://doi.org/10.1088/1758-5082/4/2/022001
  35. Xu, W. Wang, X., Yan, Y., Zheng, W., Xiong, Z., Lin, F., Wu, R. and Zhang, R., "Rapid Prototyping Three-dimensional Cell/gel-Atin/ Fibrinogen Constructs for Medical Regeneration," Journal of Bioactive and Compatible Polymers, 22, 363-377(2007). https://doi.org/10.1177/0883911507079451
  36. Xu, M. Yan, Y., Liu, H., Yao, R. and Wang, X., "Controlled Adipose-derived Stromal Cell Differentiation Into Adipose and Endothelial Cells in a 3D Structure Established by Cell-assembly Technique," Journal of Bioactive and Compatible Polymers, 24(1 suppl), 31-47(2009). https://doi.org/10.1177/0883911509102794
  37. Li, S., Xiong, Z., Wang, X., Yan, Y., Liu, H. and Zhang, R., "Direct Fabrication of a Hybrid Cell/hydrogel Construct by a Double Nozzle Assembling Technology," Journal of Bioactive and Compatible Polymers, 24, 249-265(2009). https://doi.org/10.1177/0883911509104094
  38. Shim, J.-H., Kim, J. Y., Park, M., Park, J. and Cho, D.-W., "Development of a Hybrid Scaffold with Synthetic Biomaterials and Hydrogel Using Solid Freeform Fabrication Technology," Biofabrication, 3, 034102(2011). https://doi.org/10.1088/1758-5082/3/3/034102
  39. Lee, J.-S., Hong, J. M., Jung, J. W., Shim, J.-H., Oh, J.-H. and Cho, D.-W., "3D Printing of Composite Tissue with Complex Shape Applied to Ear Regeneration," Biofabrication, 6, 024103(2014). https://doi.org/10.1088/1758-5082/6/2/024103
  40. Duan, B., Hokaday, L. A., Kang, K. H. and Butcher, J. T., "3D Bioprinting of Heterogeneous Aortic Valve Conduits with Alginate/gelatin Hydrogels," Journal of Biomedical Materials Research A, 101, 1255-1264(2013).
  41. Norte, C., Marga, F. S., Niklason, L. E. and Forgacs, G., "Scaffoldfree Vascular Tissue Engineering Using Bioprinting," Biomaterials, 30, 5910-5917(2009). https://doi.org/10.1016/j.biomaterials.2009.06.034
  42. Chang, R., Nam, J. and Sun, W., "Direct Cell Writing of 3D Microorgan for in vitro Pharmacokinetic Model," Tissue Engineering Part C Methods, 14, 157-166(2008). https://doi.org/10.1089/ten.tec.2007.0392
  43. Xu, F., Celli, J., Rizvi, I., Moon, S., Hasan, T. and Demirci, U., "A Three-dimensional in vitro Ovarian Cancer Coculture Model Using a High-throughput Cell Patterning Platform," Biotechnology Journal, 6, 204-212(2011). https://doi.org/10.1002/biot.201000340
  44. Guillemot, F., Souquet, A., Catros, S. and Guillotin, B., "Laserassisted Cell Printing: Principle, Physical Parameters Versus Cell Fate and Perspectives in Tissue Engineering," Nanomedicine, 5, 507-515(2010). https://doi.org/10.2217/nnm.10.14
  45. Hopp, B., Smausz, T., Kresdz, N., Barna, N., Bor, Z., Kolozsdvari, L., Chrisey, D. GB., Szabo, A. and Nogra, A., "Survival and Proliferative Ability of Various Living Cell Types After Laser-induced Toward Transfer," Tissue Engineering, 11, 1817-1823(2005). https://doi.org/10.1089/ten.2005.11.1817
  46. Guillotin, B., Souquet, A., Catros, S., Duocastella, M., Pippenger, B., Bellance, S., Bareille, R., Remy, M., Bordenave, L., Amedee, J., and Guillemot, F., "Laser Assisted Bioprinting of Engineered Tissue With High Cell Density and Microscale Organization," Biomaterials, 31, 7250-7256(2010). https://doi.org/10.1016/j.biomaterials.2010.05.055
  47. Barron, J., Wu, P., Andouceur, H. and Ringeisen, B., "Biological laser printing: a novel technique for creating heterogeneous 3- dimensional cell patterns", Annals of Biomedical Engineering, 6(2), 121-130(2005).
  48. Schiele, N. R., Chrisey, D. B. and Corr, D. T., "Gelatin-based Laser Direct-write Techniques for the Precise Spatial Patterning of Cells," Tissue Engineering Part C Methods, 17(3), 289-298 (2011). https://doi.org/10.1089/ten.tec.2010.0442
  49. Schiele, N. R., Corr, D. T., Huang, Y., Xie, Y. Roaf, N. A. and Chrisey, D. B., "Laser-based Direct-write Techniques for Cell Printing," Biofabrication, 2(3), 032001(2010). https://doi.org/10.1088/1758-5082/2/3/032001
  50. Keriquel, V., Guillemot, F., Arnaut, I., Guillotin, B., Miraux, S., Amedee, J., Fricain, J.-C. and Catros, S., "In vivo Bioprinting for Computer- and Robotic-assisted Medical Intervention: Preliminary Study in Mice," Biofabrication, 2, 014101(2010). https://doi.org/10.1088/1758-5082/2/1/014101
  51. Zopf, D. A., Hollister, S. J., Nelson, M. E., Ohye, R. G. and Green, G. E., "Bioresorbable Airway Splint Created with a Three- Dimensional Printer," The New England Journal of Medicine, 368, 2043-2045(2013). https://doi.org/10.1056/NEJMc1206319
  52. Lee, Y. B., Polio, S., Lee, W., Dai, G. Menon, L., Carrol, R. S. and Yoo, S. S., "Bioprinting of Collagen and VEGF-releasing Fibrin Gel Scaffolds for Neural Stem," Experimental Neurology, 223, 645-652(2010). https://doi.org/10.1016/j.expneurol.2010.02.014
  53. Lee, V., Singh, G., Trassati, J., Bjornsson, C., Xu, X., Tran, T. N., Yoo, S.-S., Dai, G. and Karande, P., "Design and Fabrication of Human Skin by 3D Bioprinting," Tissue Engineering part C Methods, 20(6), 473-484(2014). https://doi.org/10.1089/ten.tec.2013.0335
  54. Murphy, S. V. and Atala, A., "3D Bioprinting of Tissues and Organs," Nature Biotechnology, 32(8), 773-785(2014). https://doi.org/10.1038/nbt.2958
  55. Therriault, D., White, S. R. and Lewis, J. A., "Chaotic Mixing in Three-dimensional Microvascular Networks Fabricated by Directwrite Assembly," Nature Materials, 2, 265-271(2003). https://doi.org/10.1038/nmat863
  56. Kitson, P. J., Rosnes, M. H., Sans, V. and Cronin, L., "Configurable 3D Printed Millifluidic and Microfluidic 'lab on a chip' Reactionware Devices," Lab on a Chip, 12, 3267-3271(2012). https://doi.org/10.1039/c2lc40761b
  57. Anderson, K. B., Lockwood, S. Y., Martin, R. S. and Spence, D. M., "A 3D Printed Fluidic Device that Enables Integrated Features," Analytical Chemistry, 85(12), 5622-5626(2013). https://doi.org/10.1021/ac4009594
  58. Lee, K. R. and Song, K. H., "Effect of Plasma Power on Degradation of Chitosan," Korean J. Chem. Eng., 32(1), 162-165(2014).
  59. Jeong, G. T., "Production of Levulinic Acid from Chitosan by Acidic-Hydrothermal Reaction," Korean Chem. Eng. Res., 52(3) 355-359(2014). https://doi.org/10.9713/kcer.2014.52.3.355

Cited by

  1. Potential for Chemistry in Multidisciplinary, Interdisciplinary, and Transdisciplinary Teaching Activities in Higher Education vol.98, pp.4, 2016, https://doi.org/10.1021/acs.jchemed.0c01363