• 제목/요약/키워드: Injection process

검색결과 2,276건 처리시간 0.033초

초미세발포 플라스틱 기어에 관한 연구 (I) - 초미세발포 플라스틱 기어의 공정설계 - (Injection Molded Microcellular Plastic Gear (I) - Process Design for the Microcellular Plastic Gear -)

  • 하영욱;정태형
    • 대한기계학회논문집A
    • /
    • 제29권5호
    • /
    • pp.647-654
    • /
    • 2005
  • This research Proposes a Process design of injection molded microcellular plastic gears for enhancing the fatigue strength/durability and accuracy of the gears applying thermodynamic instability to microcellular foaming process. To develop the injection molded plastic gears by way of microceliular process, it is absolutely necessary the following two process design. The first is microcellular forming process for enhancing the strength/durability of plastic gears. To be microcellular process succeeded, based on the microcellular principle, mechanical apparatus is designed where nucleation and cell growth are to be generated renewably. The second is the counter pressure process which is mainly fur improving the tooth surface roughness and the accuracy of microcellular gears. For the former process, screw, nozzle and gas equipment are newly designed, and for the latter, counter pressure by nitrogen gas is intentionally brought about into mold cavity when injecting plastic gears. Based on the proposed process design, using gear mold, experiments of injection molding show that, in internal space of plastic gears, microcellular nuclear cells less than 5 lim in diameter have been generated homogeneously via electron microscope photos.

품질기능전개와 신경망 회로를 이용한 사출성형 공정변수의 예측 (Estimation of Process Parameters Using QFD and Neural Networks in Injection Molding)

  • 고범욱;김종성;최후곤
    • 산업공학
    • /
    • 제21권2호
    • /
    • pp.221-228
    • /
    • 2008
  • The injection molding process is able to produce high precision manufactures as a single process with fast speed. However, the prices of both the mold and the molding machine are expensive, and the single process is very complex and difficult to compose of the exact relationship between the process setting conditions and the product quality. Therefore, the quality of a molded product often depends on a skillful engineer's operations in the design of both parts and molds. In this paper, the relationship between the process conditions and the defectiveness is built for better manufactures under settings of the appropriate parameters, and so it can reduce the setup time in the injection molding process. Quality Function Deployment (QFD) provides severe defectiveness factors along with the related process parameters. Also, neural networks estimate the relationship between defective factors and process setting parameters, and lead to reduce the defectiveness of molded parts.

실험계획법을 통한 3.5인치 도광판의 두께 편차 최적화에 대한 연구 (Development of a precision machining process for the outer cylinder of vacuum roll for film transfer)

  • 이효은;김종선
    • Design & Manufacturing
    • /
    • 제18권2호
    • /
    • pp.41-50
    • /
    • 2024
  • In this study, experimental design methods were used to derive optimal process conditions for improving the thickness uniformity of a 0.40 mm, 3.5 inch light guide panel. Process mapping and expert group analysis were used to identify factors that influence the thickness of injection molded products. The key factors identified were mold temperature, mold temperature, injection speed, packing pressure, packing time, clamp force, and flash time. Considering the resin manufacturer's recommended process conditions and the process conditions for similar light guide plates, a three-level range was selected for the identified influencing factors. L27 orthogonal array process conditions were generated using the Taguchi method. Injection molding was performed using these L27 orthogonal array to mold the 3.5 inch light guide plates. Thickness measurements were then taken, and the results were analyzed using the signal-to-noise ratio to maximize the CpK value, leading to the determination of the optimal process conditions. The thickness uniformity of the product was analyzed by applying the derived optimum process conditions. The results showed a 97.5% improvement in the Cpk value of 3.22 compared to the process conditions used for similar light guide plates.

점탄성 효과를 가진 사출 유동에 관한 연구 (A Study on the Injection Flow with Viscoelastic Effect)

  • 전언찬;박정우;김수용;이철장;안광우
    • 한국기계가공학회지
    • /
    • 제7권3호
    • /
    • pp.25-29
    • /
    • 2008
  • In this paper, we design internal space in plunger-type low pressure vacuum injection molding machine from numerical study. And we study characteristic of viscoelastic flow for searching injection molding condition. Then the flow analysis was performed using the CAE S/W. The result shows optimal value of nozzle and hole in injection chamber. And we investigated qualitatively relationship between injection pressure and injection mass flow with variable shear rate

  • PDF

사출 및 사출/압축 성형품 내에서의 복굴절 구조 변화에 관한 연구 (A Study on The Change of Birefringence Structure in Injection and Injection/compression Molded Products)

  • 민인기;이경범;윤경환
    • 소성∙가공
    • /
    • 제19권5호
    • /
    • pp.296-304
    • /
    • 2010
  • It is still needed to study the effect of process conditions on the final properties of injection-molded parts for producing precision optical products. Especially, the optical anisotropy, i.e., birefringence, is a significant factor to affect the function of many optical components. In the present study we have focused on the effect of holding and compression processes on the birefringence remaining in the transparent disc by examining the gap-wise distribution of birefringence and extinction angle. As a result, two extra birefringence and extinction peaks near the center in thickness direction showed the effect of holding pressure, which came from the flow in packing stage. However, more uniform birefringence distribution than injection-only cases could be found in injection/compression cases. Depends on the process condition even the flow reversal could be found from the distribution of extinction angle. Finally, graphical representation of optical indicatrix was added for better understanding the final structure of injection-only and injection/compression cases.

두꺼운 세라믹 사출성형체로부터 효율적인 결합제 제거를 위한 초임계 CO2 가변조건 탈지공정 연구 (A Study on the Variable Condition Debinding Process in Supercritical CO2 for Removing Binder from Thick Ceramic Injection Molded Parts)

  • 김형건;임준혁;김형수;임종성
    • 청정기술
    • /
    • 제18권2호
    • /
    • pp.155-161
    • /
    • 2012
  • 본 연구의 목적은 분말 사출성형 공정에서 초임계유체를 이용하여 사출성형체로부터 결합제를 효율적으로 제거하는 것이다. 두께 1~2 mm 정도의 얇은 성형체의 경우는 기존의 초임계 추출공정을 이용하여 초기부터 온도, 압력이 높은 조건에서도 아무런 결함 없이 단시간 내에 결합제를 제거할 수 있지만, 시편이 두꺼워질수록 초기에 균열이 발생하기 때문에 일정 공정조건에서는 한계가 있다. 따라서 초기에는 낮은 공정조건에서 시작하여 단계별로 온도와 압력을 상승시키는 초임계 가변 조건 탈지공정을 연구하였다. 두께 1~4 mm의 세라믹 사출성형체 시편을 사용하여 여러 가지 초임계 조건에서 탈지실험을 수행하여 두꺼운 세라믹 사출성형체에 균열이 생기지 않으면서 가장 추출수율이 높은 가변조건 공정의 초기조건을 설정하였다. 이렇게 설정한 초기조건을 시작으로 직경 10 mm, 두께 4 mm의 두꺼운 세라믹 사출성형체 시편을 온도 333.15~343.15 K, 압력 12~27 MPa, $CO_2$ 유량 0.5~1.0 L/min 범위에서 단계별로 상승시켜 최종적으로는 5시간동안 95% 이상의 파라핀 왁스 결합제를 제거할 수 있었다.

인공신경망을 이용한 사출성형품의 무게 안정성 제어에 대한 연구 (A Study on the Stability Control of Injection-molded Product Weight using Artificial Neural Network)

  • 이준한;김종선
    • 한국산업융합학회 논문집
    • /
    • 제23권5호
    • /
    • pp.773-787
    • /
    • 2020
  • In the injection molding process, the controlling stability of products quality is a very important factor in terms of productivity. Even when the optimum process conditions for the desired product quality are applied, uncontrollable external factors such as ambient temperature and humidity cause inevitable changes in the state of the melt resin, mold temperature. etc. Therefore, it is very difficult to maintain prodcut quality. In this study, a system that learns the correlation between process variables and product weight through artificial neural networks and predicts process conditions for the target weight was established. Then, when a disturbance occurs in the injection molding process and fluctuations in the weight of the product occur, the stability control of the product quality was performed by ANN predicting a new process condition for the change of weight. In order to artificially generate disturbance in the injection molding process, controllable factors were selected and changed among factors not learned in the ANN model. Initially, injection molding was performed with a polypropylene having a melt flow index of 10 g/10min, and then the resin was replaced with a polypropylene having a melt floiw index of 33 g/10min to apply disturbance. As a result, when the disturbance occurred, the deviation of the weight was -0.57 g, resulting in an error of -1.37%. Using the control method proposed in the study, through a total of 11 control processes, 41.57 g with an error of 0.00% in the range of 0.5% deviation of the target weight was measured, and the weight was stably maintained with 0.15±0.07% error afterwards.

필름 인서트 사출성형 공정의 오버랩 불량 개선을 위한 필름 고정 시스템 개발 (Development of Film Fixing System for Improving Overlap Defects in the Film Insert Injection Molding Process)

  • 김정호;문지훈;박홍석
    • 한국생산제조학회지
    • /
    • 제22권3호
    • /
    • pp.472-479
    • /
    • 2013
  • We carried out research into an environmentally friendly injection molding process that involves filling the mold with polymer after thin films are fixed into the cavity, without the coating, plating process. Film insert injection molding is a new technique in which molten plastic resin is injected into the cavity after films are precisely attached to the side of the mold wall. In the film insert injection molding process, the insert film is moved by the flow of the molten plastic resin. Overlap defects cause a decline in the productivity and the quality of the manufactured goods. To reduce overlap defects, new injection mold parts are proposed to produce automotive exterior parts using thin films. It is suggested that the best possible method would be to fix the thin films to one side of the mold wall, and develop interior pins to fix the films in the mold. Based on this new pin fixing system, the problem of the film being moved by the flow of the molten resin was improved.

빠른 냉각과 재료절감을 위한 새로운 가스성형 프로세스 개발 (Development of New GAIM Process for Faster Cooling and Material Reduction)

  • 한성렬;박태원;곽진관;김철주;하만영;정영득
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.852-855
    • /
    • 2003
  • Gas-Assisted Injection Molding(GAIM) process, that can be used to provide a hollow shape in a molding, is a variant of the conventional injection molding process. GAIM has many advantages such as reduction of material, sink mark. warpage. and lower injection pressure. Thus, GAIM has been widely applied in the industry to make moldings with a hollow channel such as handles, TV frames and so on. On the other hand, GAIM has some disadvantages such as slow cooling time and flow marks. In the disadvantages, hot gas core causes slow cooling of a molding and the overflow. which is to prevent flow mark. is waste of materials. To solve these problems, we developed a new GAIM system that we called RGIM(Reverse Gas Injection Molding). The RGIM has two special units; one is the overflow buffer, which is used for reduction of a material, and the other tile air unit, which is used for faster cooling of a molding. We conducted an experiment and simulation to verify the efficiency of the RGIM system. Through experiments and simulation, we confirmed the effectively operating of the RGIM system and extracted the optimum process conditions.

  • PDF