• 제목/요약/키워드: Injection Rate Profile

검색결과 37건 처리시간 0.022초

연료캠 형상에 따른 PLN 디젤 분사계의 분사특성에 관한 시뮬레이션 (Simulation on the Characteristics of PLN Diesel Injection System by Cam Profile)

  • 이진호;왕우경;안수길
    • 동력기계공학회지
    • /
    • 제1권1호
    • /
    • pp.42-51
    • /
    • 1997
  • In this study, in order to investigate the influence of cam profile on the injection rate, the characteristics of injection in PLN (pump - line - nozzle) diesel injection system were simulated. Six types of the profile of fuel cam were used for simulation. The maximum injection pressure and maximum injection rate of initial and end phase were analyzed to demonstrate the characteristics of injection. The mathematical model of the injection system and the computation results were verified by experimental results. Simulation results showed that the maximum injection pressure, maximum injection rate, injection quantity and pressure drop in the end phase were proportional to the velocity of fuel cam during the effective stroke.

  • PDF

디젤 엔진소음 II (Diesel Combustion Noise Reduction based on the Numerical Simulation)

  • 강종민;안기환;조우흠;권몽주
    • 소음진동
    • /
    • 제7권6호
    • /
    • pp.909-918
    • /
    • 1997
  • Combustion oriented noise is a part of engine noise, which is mainly determined by the in-cylinder pressure profile and the structure attenuation of an engine. A numerical model for predicting the in-cylinder pressure profile and the resultant combustion noise developed by the use of a commercial code. The model is experimentally validated and updated based on the performance as well as the noise by considering the fuel injection timing, the fuel injection rate, Cetane number, intake temperature, and compression ratio. For providing a design guide of a fuel injector for a low combustion noise engine model, the optimal parameters of injection pressure profile, injection rate profile, and injection timing are determined, which gives the 5 dBA noise reduction.

  • PDF

디젤 인젝터 분사율 예측을 위한 AMESim 기반 1-D 모델 구축 (1-D Model to Estimate Injection Rate for Diesel Injector using AMESim)

  • 이진우;김재헌;김기현;문석수;강진석;한상욱
    • 한국분무공학회지
    • /
    • 제25권1호
    • /
    • pp.8-14
    • /
    • 2020
  • Recently, 1-D model-based engine development using virtual engine system is getting more attention than experimental-based engine development due to the advantages in time and cost. Injection rate profile is the one of the main parameters that determine the start and end of combustion. Therefore, it is essential to set up a sophisticated model to accurately predict the injection rate as starting point of virtual engine system. In this research, procedure of 1-D model setup based on AMESim is introduced to predict the dynamic behavior and injection rate of diesel injector. As a first step, detailed 3D cross-sectional drawing of the injector was achieved, which can be done with help of precision measurement system. Then an approximate AMESim model was provided based on the 3D drawing, which is composed of three part such as solenoid part, control chamber part and needle and nozzle orifice part. However, validation results in terms of total injection quantity showed some errors over the acceptable level. Therefore, experimental work including needle movement visualization, solenoid part analysis and flow characteristics of injector part was performed together to provide more accuracy of 1-D model. Finally, 1-D model with the accuracy of less than 10% of error compared with experimental result in terms of injection quantity and injection rate shape under normal temperature and single injection condition was established. Further work considering fuel temperature and multiple injection will be performed.

매엽식 방법을 이용한 웨이퍼 후면의 박막 식각 (Etching Method of Thin Film on the Backside of Wafer Using Single Wafer Processing Tool)

  • 안영기;김현종;구교욱;조중근
    • 반도체디스플레이기술학회지
    • /
    • 제5권2호
    • /
    • pp.47-49
    • /
    • 2006
  • Various methods of making thin film is being used in semiconductor manufacturing process. The most common method in this field includes CVD(Chemical Vapor Deposition) and PVD(Physical Vapor Deposition). Thin film is deposited on both the backside and the frontside of wafers. The thin film deposited on the backside has poor thickness profile, and can contaminate wafers in the following processes. If wafers with the thin film remaining on the backside are immersed in batch type process tank, the thin film fall apart from the backside and contaminate the nearest wafer. Thus, it is necessary to etch the backside of the wafer selectively without etching the frontside, and chemical injection nozzle positioned under the wafer can perform the backside etching. In this study, the backside chemical injection nozzle with optimized chemical injection profile is built for single wafer tool. The evaluation of this nozzle, performed on $Si_3N_4$ layer deposited on the backside of the wafer, shows the etching rate uniformity of less than 5% at the etching rate of more than $1000{\AA}$.

  • PDF

초정밀 사출성형 금형의 마이크로 홈가공과 전사성 (Study of transcription ability of optic polymer and Micro-grooving machining of ultra-precision injection molding moulds)

  • 곽태수;오오모리 히토시
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.623-624
    • /
    • 2005
  • Micro injection molding is a branch of micro system technology and has been under development for the mass manufacture of micro parts. Enhanced technological products like micro optical devices are entering the market. This paper presents fundamental research on the injection molding technique in micro fabrication. In order to successful manufacturing of micro plastic parts, it is necessary to research for development of micro-injection machine, machining of micro mold, decision of optimum injection conditions and the research for polymer material. Therefore in this study, in order to machining of micro mold, a mold core with microscopic V-shaped groove was tooled by ultra-precise tooling machine. The transcription experiments with a polymer, PMMA resin on the surface of core with Ni plating were carried out and surface profile of injected parts was measured with AFM.

  • PDF

CMP용 리테이닝 링의 재질이 웨이퍼의 연마성능에 미치는 영향 (Effects of CMP Retaining Ring Material on the Performance of Wafer Polishing)

  • 박기원;김은영;박동삼
    • 한국기계가공학회지
    • /
    • 제19권3호
    • /
    • pp.22-28
    • /
    • 2020
  • This paper investigates the effects of retaining ring materials, particularly PPS and PEEK, used in the CMP process, on wafer polishing and ring wear. CMP can be performed using bonded type retaining rings made with PPS or injection molding type retaining rings made with PEEK. In this study, after polishing a wafer with a PPS retaining ring, the average profile height of the wafer was 0.098 ㎛ less than that of the wafer polished with a PEEK retaining ring, implying that PPS retaining rings achieve a higher polishing rate. In addition, the center area of the wafer profile had less deviation and improved flatness after polishing with the PPS ring. These results indicate that a higher polishing rate and smaller profile height deviation can be achieved using retaining rings made with PPS compared to retaining rings made with PEEK. Therefore, with semiconductor circuit patterns becoming finer and wafer sizes becoming larger, the use of PPS in CMP retaining rings can obtain more stable wafer polishing results compared to that of PEEK.

Once-weekly Subcutaneous Administration of Bortezomib in Patients with Multiple Myeloma

  • Wang, Liang;Wang, Ke-Feng;Chang, Bo-Yang;Chen, Xiao-Qin;Xia, Zhong-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권5호
    • /
    • pp.2093-2098
    • /
    • 2015
  • In patients with multiple myeloma (MM), once-weekly intravenous injection or twice-weekly subcutaneous injection (SC) of bortezomib has been proven to offer non-inferior efficacy to standard twice-weekly intravenous administration, with an improved safety profile. However, whether once-weekly SC bortezomib can further reduce the incidence rate of peripheral neuropathy (PN) and not compromise the efficacy remains to be investigated. 25 patients of MM treated with once-weekly SC bortezomib were reviewed in this study. The median treatment cycles were 4 (range, 2-9 cycles). Complete response (CR) rate was 52%, ${\geq}$very good partial response (VGPR) rate was 72%, and ${\geq}$partial response (PR) rate was 84%. 1-year and 2-year PFS rate was 63.0% and 34.3%, respectively, and 2-year OS rate was 100%. Any grade of PN was reported in 9 patients (36.0%), with 7 patients (28.0%) had grade 1 PN, and 2 patients (8.0%) had grade 2 PN. No patients reported grade 3/4 PN in this cohort. In conclusion, once-weekly subcutaneous administration of bortezomib offers excellent efficacy with a further improved safety profile, especially with regard to PN. It needs to be validated in future prospective randomized trials.

위상 도플러 입자 분석기(PDPA)를 이용한 가솔린 포트 인젝터의 입자 크기 및 속도 프로파일에 관한 연구 (A Study on the Particle Size and Velocity Profile on a Gasoline Port Injector Using a Phase Doppler Particle Analyzers (PDPA))

  • 김효진;조현;삭다 통차이;임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제28권3호
    • /
    • pp.300-307
    • /
    • 2017
  • This study is to investigate particle size and velocity profile of gasoline port injector using Phase Doppler Particle Analyzer (PDPA). In this experiment, a GV 250 Delphi port injector used for motorcycles was used for liquid injection. The injector consists of four holes and has a static flow rate of 2.13 g/s. The fuel used in the injection was N-heptane, which is similar to gasoline, as an alternative fuel. The test fuel was injected at an atmospheric temperature of $20^{\circ}C$ and an open atmosphere of 1 atm. The injection time was 10 ms and the injection pressure was 3.5 bar in PDPA experiment. The experimental target position was fiexd at 30, 50 and 75 mm from the nozzle tip and data were collected for a total of 10,000 samples. The experimental results show that the length diameter (D10), the Sauter mean diameter ($D_{32}$), and the mean droplet velocity (MDV) are $45-54{\mu}m$, $99-115{\mu}m$ and 15-21 m/s, respectively.

냉시동 조건에서 디젤 연소 특성 및 연소 개선에 대한 연구 (Improment of Diesel Combustion using multiple injection under Cold Start Condition)

  • 이행수;이진우
    • 한국산학기술학회논문지
    • /
    • 제18권4호
    • /
    • pp.711-717
    • /
    • 2017
  • 디젤엔진은 저온 상태의 냉시동 조건에서 디젤 미립화 특성 악화로 인한 시동성 및 유해배출가스 생성의 문제를 안고 있다. 본 연구에서는 냉시동 시의 연소개선을 위한 방안으로 다단분사 전략 적용 시의 연소 특성을 파악하고자 하였다. 본 연구에서는 냉시동성 개선을 위해 방안으로 다단분사 적용 시의 연소 특성을 파악하고자 하였다. 정적 연소 챔버 내에 설치한 압력센서를 이용하여 취득한 연소압 및 열방출율, 직접 화염 가시화기법을 적용한 화염강도를 이용하여 연소현상을 분석하고자 하였다. 시험 결과 단일 분사 대비하여 다단 분사 적용 시, 주분사에 의한 최대 연소압력 및 열방출 상승률이 증가하며, 주분사에 의한 화염 감지 기간이 단축됨을 확인하였다. 파일럿 분사량 변경을 통해 분사량 증대 시 파일럿 연소에 의한 열방출 향상에 기인한 주분사에 의한 연소가 개선됨을 확인하였다. 또한 분사압력 증대 시 연료 미립화 개선으로 인한 연소개선을 화염 강도 증대를 통해 확인할 수 있었다. 다만 분사량 및 분사압 증대는 벽면적심현상으로 인한 HC, CO의 배출 수준 악화를 초래할 수 있으므로, 실제 엔진 개발 시 이에 대한 정밀한 선정이 필요할 것으로 판단된다.

유전알고리듬을 이용한 사출성형 공정조건 최적화 (Optimization of Processing Conditions in Injection Molding Using Genetic Algorithm)

  • 최원준;신효철;곽신웅
    • 대한기계학회논문집A
    • /
    • 제24권10호
    • /
    • pp.2543-2551
    • /
    • 2000
  • Precision injection molding is an important technology for improving productivity and lowering costs in the fields of medical components, lenses and electrical connectors. The quality of injection molded parts is affected by various processing conditions such as filling time and packing pressure profile. It is difficult to consider all the variables at the same time for prediction of the quality. In this study, the genetic algorithm was used to obtain the optimal processing conditions for minimizing the volumetric shrinkage of molded parts. For a higher convergence rate, the method of design of experiments was used to analyze the relationship between processing conditions and volumetric shrinkage of molded parts, which served as analysis tool for the capability of searching optimal processing conditions but also greatly reduces the calculation time by utilizing the information of searching area. As a practical example, compact disks that require micron-level precision were chosen for the study.