• Title/Summary/Keyword: Injection Molding Simulation

Search Result 261, Processing Time 0.02 seconds

Linear Structural Analysis and Simple Tensile Test of Plastic Injection Molding Tensile Specimen (플라스틱 사출인장시편의 단순인장시험 및 선형구조해석)

  • Lee, D.M.;Han, B.K.;Lee, Sung-Hee
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.230-233
    • /
    • 2006
  • In this study, the effects of residual stress induced by plastic injection molding process on the tensile behavior of plastic tensile test specimen were investigated. To manufacture plastic tensile test specimens, an injection mold based on the international standard system was designed and made. Cavity pressure and temperature sensors were installed inside of the presented mold to monitor pressure and temperature values during the cycle of injection molding. Injection molding simulation was performed with the same condition of experiment and linear structural tensile analysis was also performed with the initial condition of the residual stress. It was shown that the residual stress induced by injection molding has an effect on the experiment of tensile test and linear structural tensile simulation.

  • PDF

Numerical analysis of injection molding of aspheric lenses for a mobile phone camera module (휴대폰 카메라용 비구면렌즈 사출성형의 수치해석)

  • Park, Keun;Eom, Hye-Ju
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.143-148
    • /
    • 2008
  • In order to produce high-quality optical components, aspheric lenses have been widely applied in recent years. An aspheric lens consists of aspheric surfaces instead of spherical ones, which causes difficulty in the design process as well as the manufacturing procedure. Although injection molding is widely used to fabricate optical lenses owing to its high productivity, there remains lots of difficulty to determine appropriate mold design factors and injection molding parameters. In the injection molding fields, computer simulation has been effectively applied to analyze processes based on the shell analysis so far. Considering the geometry of optical lenses, a full-3d simulation based on solid elements has been reported as a reliable approach. The present work covers three-dimensional injection molding simulation and relevant deformation analysis of an injection molded plastic lens based on 3d solid elements. Numerical analyses have been applied to the injection molding processes of three aspheric lenses for an image sensing module of a mobile phone. The reliability of the proposed approach has been verified in comparison with the experimental results.

  • PDF

Experimental and Computational Study on the Mold Shrinkage of PPS Resin in Injection Molded Specimen

  • Pak, Hyosang;Sim, Hyojin;Oh, Hyeon-Kyung;Lee, Guen-Ho;Kang, Min-A;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.55 no.2
    • /
    • pp.120-127
    • /
    • 2020
  • In this study, molding shrinkage of PPS resin was investigated. Two types of PPS resins with differing glass fiber and calcium carbonate content were used for this purpose. To observe mold shrinkage, molding conditions based on injection temperature, injection speed, and the position of the cushion were selected. Circular and rectangular specimens were used for the study model. Injection molding simulation was performed to predict the filling pattern and mold shrinkage, and the simulation results were compared with the experimental conclusions. It was observed that the mold shrinkage showed the highest shrinkage (distributed from 0.05% to 0.32%) dependence on the injection temperature, and the lowest shrinkage (distributed from 0.05% to 0.31%) dependence on the injection speed. The role of the position of the cushion in mold shrinkage was difficult to observe. The results of the simulation mostly agreed with the experimental results; however, for some molding conditions, the mold shrinkage in the simulation was overestimated as compared to that in the experiment.

Optimizing the Injection Molding Process for Cooling Filter Using Computer Simulation and Taguchi Methods (컴퓨터 시뮬레이션과 다구치 방법을 이용한 냉각 필터 사출성형 공정의 최적화)

  • Lee, Seung-Hoon;Min, Byeong-Hyeon;Kim, Byeong-Gon
    • IE interfaces
    • /
    • v.15 no.3
    • /
    • pp.263-269
    • /
    • 2002
  • The injection molding process is a one of the most efficient techniques for manufacturing plastic parts of complex shape at low cost. In injection molding, molten plastic material is injected into the mold and cooled. Selection of molding conditions greatly affects the quality of molded parts. In this case study, we attempted to optimize the injection molding condition for a cooling filter using Taguchi experimental design methodology. The injection molding experiments were carried out using the Moldflow simulation software.

Ray Tracing of a Plastic Aspheric Lens by Considering Index Distribution Induced from Injection Molding (사출성형시 굴절율 변화를 고려하기 위한 플라스틱 비구면 렌즈의 광선추적기법)

  • Eom, Hye-Ju;Park, Keun
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.128-134
    • /
    • 2009
  • The present study covers an integrated simulation method to evaluate optical performance of an aspheric plastic lens by connecting an injection molding analysis with a ray tracing simulation. Traditional ray tracing methods have based on the assumption that the optical properties of a lens are homogeneous throughout the entire volume. This assumption is to a certain extent unrealistic for injection-molded plastic lenses because material properties vary at every point due to the injection molding effects. To take into account the effects of the inhomogeneous optical properties of the molded lens, a numerical scheme is developed to calculate the distribution of refractive index induced from the injection molding process. This index distribution is then reflected onto CODE $V^{(R)}$ simulation and used to calculate ray paths in inhomogeneous media. The proposed tracing scheme is implemented on the tracing of an aspheric lens for a mobile phone camera module.

Simulation of injection-compression molding for thin and large battery housing

  • Kwon, Young Il;Lim, Eunju;Song, Young Seok
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1451-1457
    • /
    • 2018
  • Injection compression molding (ICM) is an advantageous processing method for producing thin and large polymeric parts in a robust manner. In the current study, we employed the ICM process for an energy-related application, i.e., thin and large polymeric battery case. A mold for manufacturing the battery case was fabricated using injection molding. The filling behavior of molten polymer in the mold cavity was investigated experimentally. To provide an in-depth understanding of the ICM process, ICM and normal injection molding processes were compared numerically. It was found that the ICM had a relatively low filling pressure, which resulted in reduced shrinkage and warpage of the final products. Effect of the parting line gap on the ICM characteristics, such as filling pressure, clamping force, filling time, volumetric shrinkage, and warpage, was analyzed via numerical simulation. The smaller gap in the ICM parting line led to the better dimensional stability in the finished product. The ICM sample using a 0.1 mm gap showed a 76% reduction in the dimensional deflection compared with the normal injection molded part.

A study on optimization of injection molding of large thick LH type elastic frame (대형 후육 LH형 탄성구조 프레임의 사출성형 최적화에 관한 연구)

  • Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.16 no.1
    • /
    • pp.62-69
    • /
    • 2022
  • In the present study, the injection molding optimization of a large thick LH type elastic frames for the reduction of warpage was performed. Two kinds of fine and coarse finite element models were prepared to investigate the efficiency of analysis time and quality on simulation results. In order to derive injection molding conditions that can minimize distortion of parts, it was investigated that the effects of mold temperature, resin temperature, injection time, hold pressure switching time, holding pressure and the hold time on deformation characteristics using the design of experiments. The main influential factors on the warpage were found from the optimization simulation and the geometry data of the warpage result was converted into an initial model for injection simulation. It was shown that a coarse model with good mesh quality could be adapted for mold design since the total analysis time using the proposed model was reduced to 1/10. The suggested inversed warpage model produced the best minimized result of warpage.

Mold Filling Analysis and Post-deformation Analysis of Injection-molded Aspheric Lenses for a Mobile Phone Camera Module (휴대폰 카메라용 비구면렌즈의 성형해석 및 후변형해석)

  • Park, Keun;Eom, Hyeju;Ahn, Jong-Ho
    • Design & Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.12-17
    • /
    • 2012
  • In order to produce high-quality optical components, aspheric lenses have been widely applied in recent years. An aspheric lens consists of aspheric surfaces instead of spherical ones, which causes difficulty in the design process as well as the manufacturing procedure. Although injection molding is widely used to fabricate optical lenses owing to its high productivity, there remains lots of difficulty to determine appropriate mold design factors and injection molding parameters. In the injection molding fields, computer simulation has been effectively applied to analyze processes based on the shell analysis so far. Considering the geometry of optical lenses, a full-3d simulation based on solid elements has been reported as a reliable approach. The present work covers three-dimensional injection molding simulation and relevant deformation analysis of an injection molded plastic lens based on 3d solid elements. Numerical analyses have been applied to the injection molding processes of three aspheric lenses for an image sensing module of a mobile phone. The reliability of the proposed approach has been verified in comparison with the experimental results.

  • PDF

Developement of Simulation Model for Analysis of Hydraulic Systems in Injection Molding Machine (1) (사출성형기 유압시스템 분석용 시뮬레이션 모델 개발 (1))

  • 신성철;박영진;김진영;이강걸
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.4
    • /
    • pp.25-32
    • /
    • 2002
  • Hydraulic systems of injection molding machine are modelled and simulated with AMESim which is a commercial program. Detail models of hydraulic components are simulated and simulation results are evaluated with maker's test results in catalog. Sub system models which is divided according to functional operation are made and its analysis results shows how design parameters work on operational characteristics like cylinder speed, cylinder displacement, pressure, flow rates at each node and so on. Total circuit model is also made and analyzed. The prediction made by simulation will be used design of hydraulic systems of injection molding machine.

  • PDF