• Title/Summary/Keyword: Inject characteristics

Search Result 62, Processing Time 0.03 seconds

Breakup Characteristics of Fuel Droplet Including Nanoparticles (나노 입자가 포함된 연료 액적의 분열 특성 연구)

  • Lee, Jae Bin;Shin, Dong Hwan;Lee, Min Jung;Kim, Namil;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.17 no.4
    • /
    • pp.192-196
    • /
    • 2012
  • This paper reports on breakup characteristics of fuel droplet which includes metal nanoparticles. In order to develop a new injection system for nanoparticle-coated layers overcoming the conventional flame spray system, fundamental experiments were conducted to examine the interaction between a fuel droplet with nanoparticles and the external energy induced by the laser. In the experiments, this study used nickel nanoparticles whose size was under 100 nm to mix with kerosene as the fuel, and utilized a syringe pump and a metal needle to inject a fuel droplet. In particular, the Nd-YAG laser was adopted to give additional energy to the nanoparticles for evaporation of a fuel droplet containing nanoparticles. When the laser energy as 96 mJ was irradiated during the injection, it was observed that such an explosive evaporation occurred to break up a fuel droplet including nanoparticles, making the rapid increase in the ratio surface area to liquid volume. From this work, we suggest the possibility that the laser energy can be used for rapid evaporation of a fuel droplet.

The Effect of Control of Low Temperature Oxidation using DME-gasoline Fuel Mixture on the HCCI Combustion (저온산화반응 제어가 DME-가솔린 혼합연료의 HCCI 연소에 미치는 영향)

  • Park, Youngjin;Lim, Ocktaeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.83-90
    • /
    • 2014
  • The main purpose of the study is to investigate the ideal manner and ratio to inject gasoline and DME simultaneously into intake port, and moreover to confirm the characteristics of combustion and emission of engine. Experimental conditions are 1200 rpm, compression ratio 8.5, intake air temperature (383 K). Internal cylinder pressure was collected to confirm the characteristics of combustion in order to calculate the heat release rate in the cylinder. In addition, HORIBA (MEXA 7100) which was possible analyzing emissions (NOx, CO, HC) was used. Vanguard gasoline engine (23HP386447) was used in this experiment. The result show that fuel design (DME-Gasoline) leads to the decrease of low temperature heat release, which is a benefit for higher-load on the HCCI engine. Also, IMEP and the indicated thermal efficiency increase with combustion-phasing retard, and these observations can be explained by considering the control of low temperature oxidation of DME.

An Investigation on the Spray Characteristics of a Compressed Natural Gas Injector (고압 천연 가스 인젝터의 분무 특성에 관한 연구)

  • THONGCHAI, SAKDA;KANG, YUJIN;LIM, OCKTAECK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.2
    • /
    • pp.219-225
    • /
    • 2018
  • This study was carried out to investigate the injection characteristics of 800 kPa compressed natural gas compressed natural gas (CNG) injector developed in Korea. The CNG injector with multi-holes, employed in this experiment, was designed to inject CNG in the manifold at high pressure of 800 kPa. The spray macroscopic visualization test was carried out via Schlieren photography to study fuel-air mixing process. The fundamental spray characteristics, such as spray penetration, spray cone angle and spray velocity, were evaluated in the constant volume combustion chamber (CVCC) with varying the constant back pressure in CVCC from 0 to 1.8 bar. For the safety reason, nitrogen ($N_2$) and an acetone tracer were utilized as a surrogate gas fuel instead of CNG. The surrogate gas fuel pressures were controlled at 3, 5.5, and 8 bar, respectively. Injection durations were set at 5 ms throughout the experiment. The simulating events of the low engine speed were arranged at 1,000 rpm. The spray images were recorded by using a high-speed camera with a frame rate of 10,000 f/s at $512{\times}256pixels$. The spray characteristics were analyzed by using the image processing (Matlab). The results showed the significant difference that higher injection pressure had more effect on the spray shape than the lower injection pressure. When the injection pressure was increased, the longer spray penetration occurred. Moreover, the linear relation between speed and time are dependent on the injection pressure as well.

Improvement of the luminous efficiency of organic light emitting diode using LiF anode buffer layer

  • Park, Won-Hyeok;Kim, Gang-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.147-147
    • /
    • 2015
  • The multilayer structure of the organic light emitting diode has merits of improving interfacial characteristics and helping carriers inject into emission layer and transport easier. There are many reports to control hole injection from anode electrode by using transition metal oxide as an anode buffer layer, such as V2O5, MoO3, NiO, and Fe3O4. In this study, we apply thin films of LiF which is usually inserted as a thin buffer layer between electron transport layer(ETL) and cathode, as an anode buffer layer to reduce the hole injection barrier height from ITO. The thickness of LiF as an anode buffer layer is tested from 0 nm to 1.0 nm. As shown in the figure 1 and 2, the luminous efficiency versus current density is improved by LiF anode buffer layer, and the threshold voltage is reduced when LiF buffer layer is increased up to 0.6 nm then the device does not work when LiF thickness is close to 1.0 nm As a result, we can confirm that the thin layer of LiF, about 0.6 nm, as an anode buffer reduces the hole injection barrier height from ITO, and this results the improved luminous efficiency. This study shows that LiF can be used as an anode buffer layer for improved hole injection as well as cathode buffer layer.

  • PDF

Sequence Control of Small-scaled ITER Power Supply for Reactive Power Compensation (무효전력을 보상하는 축소형 ITER 전원공급장치의 순차제어)

  • Heo, Hye-Seong;Park, Ki-Won;Ahn, Hyun-Sik;Jang, Gye-Yong;Shin, Hyun-Seok;Choi, Jung-Wan;Oh, Jong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.932_933
    • /
    • 2009
  • A technology based on thyristors will be used to manufacture the super-conducting coil AC/DC converters because of the low ratio of cost over installed power compared to a design based on GTO or similar technology. But phase-controlled converter suffers from fundamental disadvantage. They inject current harmonics into the input ac mains due to their nonlinear characteristics, thereby distort the supply voltage waveform, and demand reactive power from the associated ac power system at retarded angles. To overcome this disadvantage, in the case of two series converters at the DC side, connected to the same step-down transformer, apply for the sequence control. It is the most simple and efficient way to reduce the reactive power consumption at low cost. Analytical sequence control algorithm is suggested, the validity of the proposed scheme has been verified by experimental results with the small-scaled International Thermonuclear Experimental Reactor (ITER) Power Supply to minimize reactive power consumption.

  • PDF

Multi-Impedance Change Localization of the On-Voltage Power Cable Using Wavelet Transform Based Time-Frequency Domain Reflectometry (웨이블릿 변환 기반 시간-주파수 영역 반사파 계측법을 이용한 활선 상태 전력 케이블의 중복 임피던스 변화 지점 추정)

  • Lee, Sin Ho;Choi, Yoon Ho;Park, Jin Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.667-672
    • /
    • 2013
  • In this paper, we propose a multi-impedance changes localization method of on-voltage underground power cable using the wavelet transform based time-frequency domain reflectometry (WTFDR). To localize the impedance change in on-voltage power cable, the TFDR is the most suitable among reflectometries because the inductive coupler is used to inject the reference signal to the live cable. At this time, the actual on-voltage power cable has multi-impedance changes such as the automatic section switches and the auto load transfer switches. However, when the multi-impedance changes are generated in the close range, the conventional TFDR has the cross term interference problem because of the nonlinear characteristics of the Wigner-Ville distribution. To solve the problem, the wavelet transform (WT) is used because it has the linearity. That is, using WTFDR, the cross term interference is not generated in multi-impedance changes due to the linearity of the WT. To confirm the effectiveness and accuracy of the proposed method, the actual experiments are carried out for the on-voltage underground power cable.

Nonpharmacological management and psychosocial support for children and adolescents with type 1 diabetes

  • Yoo, Jae-Ho
    • Clinical and Experimental Pediatrics
    • /
    • v.54 no.2
    • /
    • pp.45-50
    • /
    • 2011
  • Compared to that in the Caucasian population, type 1 diabetes mellitus (T1DM) incidence rates are very low in Koreans. Therefore, compared to the recent development of pharmacological therapy applicable to Korean children with T1DM, interest in nonpharmacological therapy and psychosocial support systems remains low, as is the development of Korean-style T1DM education programs for therapeutic application. Children who have been newly diagnosed with diabetes are placed in completely new environments for treatment. For appropriate control of diabetes, patients have to self-monitor blood glucose levels and inject insulin several times a day and must use extreme self-control when they eat foods to avoid increases in blood glucose levels. Blood glucose excursions resulting from impaired pancreatic ${\beta}$ cell functions cause mental stress due to vague fears of chronic complications of diabetes. In addition, children with diabetes cannot be excluded from the substantial amount of studies required of Korean adolescents, and the absolute shortage of time for ideal control of diabetes adds to their mental stress. Many of these patients are psychologically isolated in school where they spend most of their time, and they are not appropriately considered or supported with respect to blood glucose control in many cases. In this respect, this author will introduce some of the newest views on nonpharmacological therapy and psychosocial support systems that account for important parts of T1DM management and seek measures to apply them in conformity with the social characteristics of Korea.

CHARACTERISTICS OF WALL IMPINGEMENT AT ELEVATED TEMPERATURE CONDITIONS ON GDI SPRAY

  • Park, J.;Im, K.S.;Kim, H.;Lai, M.C.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.155-164
    • /
    • 2004
  • The direct injection gasoline spray-wall interaction was characterized inside a heated pressurized chamber using various visualization techniques, including high-speed laser-sheet macroscopic and microscopic movies up to 25,000 frames per second, shadowgraph, and double-spark particle image velocimetry. Two hollow cone high-pressure swirl injectors having different cone angles were used to inject gasoline onto a heated plate at two different impingement angles. Based on the visualization results, the overall transient spray impingement structure, fuel film formation, and preliminary droplet size and velocity were analyzed. The results show that upward spray vortex inside the spray is more obvious at elevated temperature condition, particularly for the wide-cone-angle injector, due to the vaporization of small droplets and decreased air density. Film build-up on the surface is clearly observed at both ambient and elevated temperature, especially for narrow cone spray. Vapor phase appears at both ambient and elevated temperature conditions, particularly in the toroidal vortex and impingement plume. More rapid impingement and faster horizontal spread after impingement are observed for elevated temperature conditions. Droplet rebounding and film break-up are clearly observed. Post-impingement droplets are significantly smaller than pre-impingement droplets with a more horizontal velocity component regardless of the wall temperature and impingement angle condition.

The Cooling Characteristics of a Gas Deflector Using Water Spray Cooling System in Launch Pad (물 분사 냉각시스템을 이용한 발사대 화염유도로의 냉각특성)

  • Lee, Kwang-Jin;Chung, Yong-Gahp;Cho, Nam-Kyung;Nam, Jung-Won;Jung, Il-Hyung;Ra, Seung-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.756-762
    • /
    • 2011
  • A gas deflector cooling system plays an important role in the suppression of shock wave generated during the ignition of a launch vehicle engine. Also, this system decrease a large vibration of damaging the payload and structure of the launch vehicle. The gas deflector cooling system in the launch pad of NARO space center was constructed to directly inject water into the plume of the launch vehicle engine. The flight test result of NARO space launch vehicle showed that this method had a good performance on the viewpoint of cooling the gas deflector.

  • PDF

Thruster system for attitude control of launch vehicles (발사체 자세 제어용 추력기 시스템)

  • Shin, Dong-Sun;Han, Sang-Yeop;Kim, Young-Mog
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.7-10
    • /
    • 2006
  • In order to inject satellites into a target orbit, launch vehicles should have a precise attitude and control system capable of controlling three axises of pitch, yaw and roll. For launch vehicles, there are two types of attitude control system currently in popular use; the first one is a cold gas method, and the other is a liquid propulsion system using a single and dual property propellant. The purpose of this paper is to analyze the characteristics of thrust control system using said propellant, thereby providing for a rationale for its application to the upper stages of launch vehicles, in terms of the simplicity of the system, economics of structure and operation.

  • PDF