• 제목/요약/키워드: Initial Tensile Residual Stress

검색결과 25건 처리시간 0.03초

수치해석기법을 이용한 초기 인장잔류응력에 대한 레이저 충격 피닝 효과 분석 (Analysis of the Effects of Laser Shock Peening under Initial Tensile Residual Stress Using Numerical Analysis Method)

  • 김주희;이종우;유삼현
    • 한국군사과학기술학회지
    • /
    • 제20권5호
    • /
    • pp.608-619
    • /
    • 2017
  • In this paper, the effects of parameters related to the residual stress induced due to laser shock peening process to determine mitigation of the initial tensile residual stresses are discussed, such as the maximum pressure, pressure pulse duration, laser spot size and number of laser shots. In order to estimate the influence of the initial tensile residual stresses, which is generated by welding in 35CD4 50HRC steel alloy, the initial condition option was employed in the finite element code. It is found that $2{\times}HEL$ maximum pressure and a certain range of the pressure pulse duration time can produce maximum mitigation effects near the surface and depth, regardless of the magnitudes of tensile residual stess. But plastically affected depth increase with increasing maximum pressure and pressure pulse duration time. For the laser spot size, maximum compressive residual stresses have almost constant values. But LSP is more effective with increasing the magnitudes of tensile residual stress. For the multiple LSP, magnitudes of compressive residual stresses and plastically affected depths are found to increase with increasing number of laser shots, but the effect is less pronounced for more laser shots. And to conclude, even though the initial tensile residual stresses such as weld residual stress field are existed, LSP is enough to make the surface and depth reinforcement effects.

피로균열이 진전할 때 용접잔류응력의 재분포와 그 영향 (Redistribution of Welding Residual Stress and its Effects on Fatigue Crack Propagation)

  • 이용복;조남익
    • Journal of Welding and Joining
    • /
    • 제13권4호
    • /
    • pp.155-162
    • /
    • 1995
  • Redistribution of residual stress and its effects during fatigue crack propagates from tensile residual stress region in weldment are investigated. Tests are performed by using welded CCT specimens of structual rolling steel (SS400) and it makes fatigue crack propagate from tensile residual stress region. For this study tension-tension loading type is selected by external loading condition and magnetizing stress indicator is used correctly to measure redistribution of residual stress according to fatigue crack growth and number of loading cycles. From this result, it is proved that redistribution of residual stress is mainly consist of residual stress released by fatigue crack growth. When fatigue crack propagates from tensile residual stress region residual stress are redistributed and it makes fatigue crack growth rate largely increase. Fatigue crack growth rate is low in case of redistributed residual stress compare with initial distributed residual stress.

  • PDF

진수후 데크 topside 용접부의 응력 거동 특성에 관한 연구 (A Study on the Characteristic of Stress Behavior of Topside Weldment Welded after Launching)

  • 이동주;신상범
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2010년도 춘계학술발표대회 초록집
    • /
    • pp.58-58
    • /
    • 2010
  • The purpose of this study is to evaluate the structural safety at the topside weldment of hull structure, which was welded after launching. For it, the variations of residual stress and distortion at the topside weldment with loading conditions such as hull girder hogging bending moment after launching and free initial loading state was evaluated by using FEA. And the maximum stress range at the weldment under design loads specified by classification society was evaluated by FEA. In this case, the residual stress and welding distortion at the topside weldment was assumed to be initial imperfection. In accordance with FEA results, regardless of initial loading condition, tensile residual stress was found. However, the residual stress and welding distortion at the topside weldment produced under hogging condition was less than those of topside weldment under free loading state. That is, the amount of residual stress at the topside weldment decreased with an increase in the amount of tension load caused by hogging condition. It was because the compressive thermal strain at the topside weldment produced during welding was reduced by tensile load. However, the maximum stress range at the topside weldment under maximum hull girder bending moment was almost similar regardless of initial loading condition. So, if the problem related to the soundness of weldment is not introduced by initial load, the effect of initial loading condition during welding on fatigue strength of topside weldment could be negligible.

  • PDF

The effect of initial stress induced during the steel manufacturing process on the welding residual stress in multi-pass butt welding

  • Park, Jeong-ung;An, Gyubaek;Woo, Wanchuck
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권2호
    • /
    • pp.129-140
    • /
    • 2018
  • A residual stress generated in the steel structure is broadly categorized into initial residual stress during manufacturing steel material, welding residual stress caused by welding, and heat treatment residual stress by heat treatment. Initial residual stresses induced during the manufacturing process is combined with welding residual stress or heat treatment residual stress, and remained as a final residual stress. Because such final residual stress affects the safety and strength of the structure, it is of utmost importance to measure or predict the magnitude of residual stress, and to apply this point on the design of the structure. In this study, the initial residual stress of steel structures having thicknesses of 25 mm and 70 mm during manufacturing was measured in order to investigate initial residual stress (hereinafter, referred to as initial stress). In addition, thermal elastic plastic FEM analysis was performed with this initial condition, and the effect of initial stress on the welding residual stress was investigated. Further, the reliability of the FE analysis result, considering the initial stress and welding residual stress for the steel structures having two thicknesses, was validated by comparing it with the measured results. In the vicinity of the weld joint, the initial stress is released and finally controlled by the weld residual stress. On the other hand, the farther away from the weld joint, the greater the influence of the initial stress. The range in which the initial stress affects the weld residual stress was not changed by the initial stress. However, in the region where the initial stress occurs in the compressive stress, the magnitude of the weld residual compressive stress varies with the compression or tension of the initial stress. The effect of initial stress on the maximum compression residual stress was far larger when initial stress was considered in case of a thickness of 25 mm with a value of 180 MPa, while in case of thickness at 70 mm, it was 200 MPa. The increase in compressive residual stress is almost the same as the initial stress. However, if initial stress was tensile, there was no significant change in the maximum compression residual stress.

Butt 용접판재에서의 피로균열성장거동에 미치는 잔류응력의 영향에 관한 연구 (A Study on the Influence Residual Stresses on Fatigue Crack Growth Behaviors in the Butt Welded Plate)

  • 차용훈;정종안;채경수;김하식
    • 한국안전학회지
    • /
    • 제8권2호
    • /
    • pp.64-71
    • /
    • 1993
  • In this study, the purpose is to investigate the influence of initial residual stresses on the fatigue crack growth behaviors after the distribution of initial residual stresses Is measured when the crack is growing from the compressive residual stresses field to the tensile residual stress field. Also, the Influence of the variation of residual stress distribution on the fatigue crack growth behaviors at the crack tip is studied when the initial crack li applied on base metal, weld metal and HAZ respectively.

  • PDF

플라스틱 사출인장시편의 단순인장시험 및 선형구조해석 (Linear Structural Analysis and Simple Tensile Test of Plastic Injection Molding Tensile Specimen)

  • 이도명;한병기;이성희
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.230-233
    • /
    • 2006
  • In this study, the effects of residual stress induced by plastic injection molding process on the tensile behavior of plastic tensile test specimen were investigated. To manufacture plastic tensile test specimens, an injection mold based on the international standard system was designed and made. Cavity pressure and temperature sensors were installed inside of the presented mold to monitor pressure and temperature values during the cycle of injection molding. Injection molding simulation was performed with the same condition of experiment and linear structural tensile analysis was also performed with the initial condition of the residual stress. It was shown that the residual stress induced by injection molding has an effect on the experiment of tensile test and linear structural tensile simulation.

  • PDF

알루미늄 합금 용접재의 피로파괴에 미치는 잔유응력의 영향에 관한 연구 (A Study on the Influence of Residual Stresses on Fatigue Fracture of Aluminum Alloy Weldments)

  • 차용훈
    • 한국생산제조학회지
    • /
    • 제4권4호
    • /
    • pp.25-32
    • /
    • 1995
  • This study is to inspect the influence of the initial residual stress on fatigue crack growth behavior after the distribution of the initial residual stress is measured when the crack is growing from the compressive residual stress field. Also, the tensile residual stress field. Also, the influence of the variation of residual stress distribution on fatigue crack growth behavior at the crack tip is studied when the initial crack occurs on weld metal, bead interface and HAZ (Heat Affected Zone), respectively. For this purpose, CT-type specimen that crack parallel to the welding bead were manufactured by butt welding on the Al. Alloy 1100-O plate.

  • PDF

사출성형과정의 잔류응력을 고려한 표준인장시편의 선형구조해석 (Linear Structural Analysis of Standard Plastic Tensile Specimen with Residual Stress Induced by Injection Molding)

  • 이도명;한병기;이성희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.579-580
    • /
    • 2006
  • In this study, an injection mold of tensile test specimen was manufactured by international standard. Pressure and temperature in the cavity of the injection mold was measured by sensors. Simulation of injection molding process was performed with the same condition of experiment and linear structural tensile analysis was also performed with the initial condition of the residual stress induced by injection molding analysis. Normalized elastic coefficient of tensile test was compared with that of structural analysis. It was shown that the residual stress induced by injection molding has an effect on both the experiment of tensile test and linear structural analysis.

  • PDF

정전형 미소 평판 공진자의 설계 및 제작 (Design and Fabrication of an Electrostatic Microplate Resonator)

  • 정옥찬;양상식
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권6호
    • /
    • pp.494-502
    • /
    • 1999
  • This paper represents an electrostatic micro plate resonator which consists of a rigid plate suspended with four bridges and a counter electrode. The bridges of the resonator are designed corrugated so that the residual stress are released. The FEM simulation results confirmed that the deflection characteristic of the corrugated bridge is hardly affected by the initial residual tensile stress. One resonator with the corrugated bridges and the other with the flat bridges were fabricated by the boron diffusion process and the anisotropic etch process. The vertical deflection of the fabricated electrostatic resonator was measured with a laser vibrometer, and the data were compared with the calculation results. The deflection of the resonator with the flat bridges is smaller than the deflection of that with the corrugated ones because of the residual stress. The residual stress release effect was confirmed by the fact that the measured deflection of the resonator with the corrugated bridges in close to the calculated deflection of the resonator with the flat ones with the initial stress neglected.

  • PDF

용접잔류응력장에서 피로균열의 전파에 따른 잔류응력 재분포에 대한 해석적 평가 (An Evaluation of Residual Stress Redistribution in the Welding Residual Stress Field Caused by Fatigue Crack Propagation by Finite Element Method)

  • 박응준;김응준
    • Journal of Welding and Joining
    • /
    • 제26권6호
    • /
    • pp.92-96
    • /
    • 2008
  • An investigation was performed to predict residual stress redistribution for the crack propagation initially through tensile residual stress field. The analytical method, which is based on Dugdale model by finite element analysis using elastic analysis method considering the superposition principle, was proposed to estimate the redistribution of residual stress caused by crack propagation. The various aspect of distribution of residual stress caused by crack propagation was examined based on the configuration change of specimen. The analysis results show that the aspect of redistribution of residual stress caused by crack propagation depends on the width of the specimen provided that the initial distribution of residual stress is identical.