• 제목/요약/키워드: Initial Stiffness

검색결과 739건 처리시간 0.023초

Initial stiffness and moment capacity assessment of stainless steel composite bolted joints with concrete-filled circular tubular columns

  • Wang, Jia;Uy, Brian;Li, Dongxu
    • Steel and Composite Structures
    • /
    • 제33권5호
    • /
    • pp.681-697
    • /
    • 2019
  • This paper numerically assesses the initial stiffness and moment capacity of stainless steel composite bolted joints with concrete-filled circular tubular (CFCT) columns. By comparing with existing design codes including EN 1993-1-8 and AS/NZS 2327, a modified component method was proposed to better predict the flexural performance of joints involving circular columns and curved endplates. The modification was verified with independent experimental results. A wide range of finite element models were then developed to investigate the elastic deformations of column face in bending which contribute to the corresponding stiffness coefficient. A new design formula defining the stiffness coefficient of circular column face in bending was proposed through regression analysis. Results suggest that a factor for the stiffness coefficient of endplate in bending should be reduced to 0.68, and more contribution of prying forces needs to be considered. The modified component method and proposed formula are able to estimate the structural behaviour with reasonable accuracy. They are expected to be incorporated into the current design provisions as supplementary for beam-to-CFCT column joints.

면진구조물 내 층응답스펙트럼 작성을 위한 고려사항 (Considerations for the Generation of In-Structure Response Spectra in Seismically Isolated Structures)

  • 이승재;김정한
    • 한국지진공학회논문집
    • /
    • 제26권2호
    • /
    • pp.95-103
    • /
    • 2022
  • In order to evaluate the earthquake safety of equipment in structures, it is essential to analyze the In-Structure Response Spectrum (ISRS). The ISRS has a peak value at the frequency corresponding to the structural vibration mode, but the frequency and amplitude at the peak can vary because of many uncertain parameters. There are several seismic design criteria for ISRS peak-broadening for fixed base structures. However, there are no suggested criteria for constructing the design ISRS of seismically isolated structures. The ISRS of isolated structures may change due to the major uncertainty parameter of the isolator, which is the shear stiffness of the isolator and the several uncertainty parameters caused by the nonlinear behavior of isolators. This study evaluated the effects on the ISRS due to the initial stiffness of the bi-linear curve of isolators and the variation of effective stiffness by the input ground motion intensity and intense motion duration. Analyzing a simplified structural model for isolated base structure confirmed that the ISRS at the frequency of structural mode was amplified and shifted. It was found that the uncertainty of the initial stiffness of isolators significantly affects the shape of ISRS. The variation caused by the intensity and duration of input ground motions was also evaluated. These results suggested several considerations for generating ISRS for seismically isolated structures.

Exact dynamic element stiffness matrix of shear deformable non-symmetric curved beams subjected to initial axial force

  • Kim, Nam-Il;Kim, Moon-Young
    • Structural Engineering and Mechanics
    • /
    • 제19권1호
    • /
    • pp.73-96
    • /
    • 2005
  • For the spatially coupled free vibration analysis of shear deformable thin-walled non-symmetric curved beam subjected to initial axial force, an exact dynamic element stiffness matrix of curved beam is evaluated. Firstly equations of motion and force-deformation relations are rigorously derived from the total potential energy for a curved beam element. Next a system of linear algebraic equations are constructed by introducing 14 displacement parameters and transforming the second order simultaneous differential equations into the first order simultaneous differential equations. And then explicit expressions for displacement parameters are numerically evaluated via eigensolutions and the exact $14{\times}14$ dynamic element stiffness matrix is determined using force-deformation relations. To demonstrate the accuracy and the reliability of this study, the spatially coupled natural frequencies of shear deformable thin-walled non-symmetric curved beams subjected to initial axial forces are evaluated and compared with analytical and FE solutions using isoparametric and Hermitian curved beam elements and results by ABAQUS's shell elements.

초기변형을 갖고 있는 회전축의 동특성에 관한 연구 (A Study on the Dynamic Characteristics of a Shaft with Initial Deflection)

  • 김용철;김봉균;김병옥
    • 한국자동차공학회논문집
    • /
    • 제6권6호
    • /
    • pp.80-87
    • /
    • 1998
  • In this study, the effects of residual shaft bow and flexible bearings of a single disk rotor are investigated. The stiffness coefficients of a shaft with initial deflection are different from those of a straight shaft. The stiffness coefficients are calculated using Castigliano theorem considering initial deflections. The stiffness coefficients, which are obtained in this study, are in good agreement with FEM results. The speed which causes zero amplitude is shown to be the square root of the ratio of residual bow amplitude to unbalance eccentricity in the case of rigid bearings and isotropic flexible bearings, but not in anisotropic bearings.

  • PDF

PCS 구조 시스템 접합부의 초기 강성에 대한 연구 (Initial Stiffness of Beam Column Joints of PCS Structural Systems)

  • 박순규;김무경
    • 콘크리트학회논문집
    • /
    • 제20권3호
    • /
    • pp.271-282
    • /
    • 2008
  • PCS 구조 시스템은 공장 제작 콘크리트 기둥과 휨, 전단성능에 유리한 철골보를 접합한 복합구조의 일종이다. 접합부는 기둥을 관통하는 볼트를 사용하여 단부평판 접합하게 된다. 따라서 건식공법이 가능하여 작업환경이 양호하고 공기단축이 가능하며 해체가 용이한 장점이 있다. 하지만 실험을 통해 PCS 시스템의 내진성능을 분석한 결과 강도, 강성, 에너지소산 능력은 ACI 기준에 만족하였으나, 초기 강성의 경우 실험체 모두 ACI 기준에 부족하였다. 초기강성이 저하된 요인을 조사하여 접합부 강성을 증가시킬 수 있는 방안을 마련하고자 컴퓨터 시뮬레이션을 하였다. ABAQUS를 사용하여 네오프랜 패드의 유무와 두께, 단부평판과 기둥의 접촉면 형상, 볼트 긴장력의 크기, 단부평판의 강성 등과 같이 접합부 강성에 영향을 주는 변수들로 연구를 수행하였다. 그 결과 기둥과 단부평판 사이의 초기 변형이나 네오프랜과 같은 채움재와 단부평판의 낮은 강성이 초기 강성을 저하시키는 것으로 조사되었다. 접합부 성능을 개선하는 방안으로 볼트간격을 조정하거나 스티프너로 보강하여 단부평판의 강성을 높이는 방법도 효과가 있었으나, 볼트의 긴장력을 증가하는 방법이 가장 효과적이었다. 단부평판의 상하부에 분리형 네오프랜 패드를 끼워 갭의 영향을 최소화하는 방법도 꽤 우수하였다.

Research on damage and identification of mortise-tenon joints stiffness in ancient wooden buildings based on shaking table test

  • Xue, Jianyang;Bai, Fuyu;Qi, Liangjie;Sui, Yan;Zhou, Chaofeng
    • Structural Engineering and Mechanics
    • /
    • 제65권5호
    • /
    • pp.547-556
    • /
    • 2018
  • Based on the shaking table tests of a 1:3.52 scale one-bay and one-story ancient wooden structure, a simplified structural mechanics model was established, and the structural state equation and observation equation were deduced. Under the action of seismic waves, the damage rule of initial stiffness and yield stiffness of the joint was obtained. The force hammer percussion test and finite element calculations were carried out, and the structural response was obtained. Considering the 5% noise disturbance in the laboratory environment, the stiffness parameters of the mortise-tenon joint were identified by the partial least squares of singular value decomposition (PLS-SVD) and the Extended Kalman filter (EKF) method. The results show that dynamic and static cohesion method, PLS-SVD, and EKF method can be used to identify the damage degree of structures, and the stiffness of the mortise-tenon joints under strong earthquakes is reduced step by step. Using the proposed model, the identified error of the initial stiffness is about 0.58%-1.28%, and the error of the yield stiffness is about 0.44%-1.21%. This method has high accuracy and good applicability for identifying the initial stiffness and yield stiffness of the joints. The identification method and research results can provide a reference for monitoring and evaluating actual engineering structures.

막구조물의 파손단면에서의 응력집중 현상에 관한 연구 (A Study on the Stress Concentration at Crack of Membrane Structures)

  • 전진형;정을석;김승덕
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2005년도 춘계학술발표회 및 정기총회 2권1호(통권2호)
    • /
    • pp.89-98
    • /
    • 2005
  • Membrane structures, a kind of lightweight soft structural system, are used for spatial structures. The material property of the membrane has strong axial stiffness, but little bending stiffness. Therefore membrane structures arc unstable structures initially. These soft structures need to be introduced initial stresses first because of its initial unstable state, and it happens large deformation phenomenon. To find the structural shape after large deformation caused by initial stiffness introduced, we need the shape analysis considering geometric nonlinearity in structural design procedure. In this study, we investigate into the stress concentration at crack of membrane structures. Therefore, using the nonlinear analysis program that NASS (Nonlinear Analysis for Spatial Structures) perform nonlinear analysis, and stress distribution for creak length investigate for using linear elastic fracture mechanics.

  • PDF

막 구조물의 측지선을 이용한 재단도 생성에 관한 연구 (A Study on Cutting Pattern Generation of Membrane Structures by Using Geometric Line)

  • 안상길;손수덕;김승덕
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2005년도 춘계학술발표회 및 정기총회 2권1호(통권2호)
    • /
    • pp.125-132
    • /
    • 2005
  • Membrane structures, a kind of lightweight soft structural system, are used for spatial structures. The material property of the membrane has strong axial stiffness, but little bending stiffness. The design procedure of membrane structures are needed to do shape finding, stress-deformation analysis and cutting pattern generation. In shape finding, membrane structures are unstable structures initially. These soft structures need to be introduced initial stresses because of its initial unstable state, and it happens large deformation phenomenon. And also there are highly varied in their size, curvature and material stiffness. So, the approximation inherent in cutting pattern generation methods is quite different. Therefore, in this study, to find the structural shape after large deformation caused by Initial stress, we need the shape analysis considering geometric nonlinear ten And the geodesic line on surface of initial equilibrium shape and the cutting pattern generation using the geodesic line is introduced.

  • PDF

고유수용성감각 촉진을 위한 나선형 테이핑 방법이 근육 경도 변화에 미치는 즉각적인 효과 (Immediate Effect of the Proprioceptive Spiral Taping Method on Changes in Muscle Stiffness)

  • 양재만
    • PNF and Movement
    • /
    • 제20권3호
    • /
    • pp.321-329
    • /
    • 2022
  • Purpose: The purpose of this study was to compare the immediate effect on the change in muscle stiffness in the common extensor muscle (CEM) when using the spiral taping method to promote proprioception. Methods: There were 18 participants in this study. CEM stiffness was measured using a MyotonePRO device with the subject in a sitting position and according to the proprioceptive neuromuscular facilitation (PNF) arm pattern. Elastic tape was used as the material for the three taping methods employed in the study: kinesiotaping (KT), right spiral taping (RST), and left spiral taping (LST). The taping methods were applied to the wrist extensor muscle with elongation position. Additionally, when performing PNF arm patterns, spiral taping in diagonal and spiral directions was used to promote CEM proprioceptors. The change in CEM stiffness was compared with the initial data values. Results: The results of this study were obtained by comparing and measuring changes in CEM stiffness using three different tapings. It was found that the stiffness change of the CEM was significant compared to the initial value, and the increase in stiffness of the CEM after RST application was also significant. Conclusion: The results of this study show that by affecting the strength and activation of the extensor muscle, taping performed through the RST method had the most positive effect on the change in CEM stiffness.

자동차 공기스프링의 특성에 대한 실험적 고찰 (An Experimental Investigation on the Characteristics of An Automotive Air Spring)

  • 이재천;류하오
    • 유공압시스템학회논문집
    • /
    • 제8권2호
    • /
    • pp.17-22
    • /
    • 2011
  • The analysis of an air spring characteristics is necessary to design and control automotive air suspension system properly. A mathematical model of an air spring was derived in light of energy conservation first. Then static and dynamic experiments of the air spring have been fulfilled. The static stiffness with various initial pressures and effective areas were obtained from the static experimental results. Theoretical static stiffness obtained by using the mathematical model and effective area data is in close accordance with the experimental estimation. The dynamic experimental results show that the hysteresis in displacement-force cycle decreases when the frequency of the harmonic displacement excitation signal increases, but it does not change too much as the frequency is higher than 1Hz. And the dynamic stiffness goes up with increasing of the initial pressure and the excitation frequency.