• Title/Summary/Keyword: Initial Concentration

Search Result 3,414, Processing Time 0.034 seconds

Fabrication of TiO2 Impregnated Stainless Steel Fiber Photocatalyts and Evaluation of Photocatalytic Activity (TiO2 담지 스테인리스 강 섬유 광촉매 제조 및 광촉매 활성 평가)

  • Song, Sun-Jung;Kim, Kyoung Seok;Kim, Kyung Hwan;Li, Hui Jie;Cho, Dong Lyun;Kim, Jong Beom;Park, Hee Ju;Shon, Hokyong;Kim, Jong-Ho
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.674-679
    • /
    • 2008
  • $TiO_2$ impregnated stainless steel fiber photocatalysts ($TiO_2/SSF$) were fabricated to overcome inherent problems of powdery $TiO_2$ photocatalysts in water treatment. Adhesion strength of the impregnated $TiO_2$ was examined using an ultrasonic-cleaner. Photocatalytic activity was evaluated through decomposition experiment of methylene blue and formic acid. Bactericidal efficiency was evaluated through sterilization experiment of E. Coli and Vibrio Vulnificus. Adhesion strength of the impregnated $TiO_2$ was so high that more than 95% was left over even after the treatment in an ultrasonic-cleaner for 30 min. Methylene blue and formic acid were decomposed as much as 60% and 38% of the initial concentration and more than 99.9% of E. Coli and Vibrio Vulnificus were killed after 1 hour exposure to the prepared photocatalyst under UV irradiation. In the case of decomposition of formic acid, decomposition ratio increased if oxidants were added. Especially the decomposition ratio increased as high as 80% when hydrogen peroxide was added as an oxidant.

Adsorption Equilibrium, Kinetics and Thermodynamic Parameters Studies of Bismarck Brown R Dye Adsorption on Granular Activated Carbon (입상 활성탄에 대한 비스마르크 브라운 R 염료의 흡착평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.327-332
    • /
    • 2013
  • Batch experiments were carried out for adsorption equilibrium, kinetics and thermodynamic parameters of the brilliant brown R onto granular activated carbon. The operating variables studied were the initial dye concentration, contact time and temperature. Experimental equilibrium adsorption data were fitted to Langmuir and Freundlich adsorption isotherm by linear regression method. The equilibrium process was well described by Freundlich isotherm model and from the determined separation factor (1/n), granular activated carbon could be employed as an effective treatment for the removal of bismarck brown R. From kinetic experiments, the adsorption processes were found to confirm the pseudo second order model with a good correlation and the adsorption rate constant ($k_2$) increased with increasing adsorption temperature. Thermodynamic parameters like the activation energy, change of Gibbs free energy, enthalpy, and entropy were also calculated to predict the nature of adsorption in the temperature range of 298~318 K. The activation energy was determined as 8.73 kJ/mol for 100 mg/L. It was found that the adsorption of bismarck brown R on the granular activated carbon was physical process. The negative Gibbs free energy change (${\Delta}G$ = -2.59~-4.92 kJ/mol) and the positive enthalpy change (${\Delta}H$ = +26.34 kJ/mol) are indicative of the spontaneous and endothermic nature of the adsorption process.

New Synthesis of the Ternary Type Bi2WO6-GO-TiO2 Nanocomposites by the Hydrothermal Method for the Improvement of the Photo-catalytic Effect (개선된 광촉매 효과를 위한 수열법에 의한 삼원계 Bi2WO6-GO-TiO2 나노복합체의 쉬운 합성 방법)

  • Nguyen, Dinh Cung Tien;Cho, Kwang Youn;Oh, Won-Chun
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.705-713
    • /
    • 2017
  • A novel material, $Bi_2WO_6-GO-TiO_2$ composite, was successfully synthesized using a facile hydrothermal method. During the hydrothermal reaction, the loading of $Bi_2WO_6$ and $TiO_2$ nanoparticles onto graphene sheets was achieved. The obtained $Bi_2WO_{6-GO-TiO2}$ composite photo-catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), Raman spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy (UV-vis-DRS), and X-ray photoelectron spectroscopy (XPS). The $Bi_2WO_6$ nanoparticle showed an irregular dark-square block nanoplate shape, while $TiO_2$ nanoparticles covered the surface of the graphene sheets with a quantum dot size. The degradation of rhodamine B (RhB), methylene blue trihydrate (MB), and reactive black B (RBB) dyes in an aqueous solution with different initial amount of catalysts was observed by UV spectrophotometry after measuring the decrease in the concentration. As a result, the $Bi_2WO_6-GO-TiO_2$ composite showed good decolorization activity with MB solution under visible light. The $Bi_2WO_6-GO-TiO_2$ composite is expected to become a new potential material for decolorization activity. Photocatalytic reactions with different photocatalysts were explained by the Langmuir-Hinshelwood model and a band theory.

Spatial and Temporal Dynamics of Turbid Water in Hypolimnetic Discharging Reservoir (심층 방류하는 안동호 내 탁수의 거동)

  • Park, Jae-Chung;Jung, Seok-Won;Park, Jung-Won;Kim, Ho-Joon
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.3
    • /
    • pp.360-366
    • /
    • 2008
  • The spatial and temporal variations of the high turbid water by a single event of heavy rain (total 299.1 mm and daily maximum 99.4 mm) were studied in Andong Reservoir, which has hypolimnetic discharges. Turbid water entered into the reservoir, was isolated from the bottom at the midreservoir and then passed through the metalimnion as an interflow current in the lacustrine zone. Maximum turbidity was 290 NTU at 16 m depth of the midreservoir, but the initial turbidity showed about 10 NTU in the reservoir before the rainfall. Turbid water in the reservoir affected to increase the withdrawal turbidity from the 3rd day after the rainfall, the maximum turbidity was 129 NTU at 5th day after the rainfall. Turbid water that flew towards the downreservoir distributed within 5 m above the outlet gate of the intake tower, showing the maximum turbidity, and that was decreased in its thickness and concentration by discharging through the intake tower. It has taken 38 days until the turbidity in the withdrawal reduced to 30 NTU, and 87 days to reduce the turbidity to the way when it was before the rainfall, with the correlation coefficient of 0.96 and 0.97, respectively. Turbid water was withdrawn from the reservoir by entraining into the intake tower as a form of the interflow, and not be settled down to the bottom of the reservoir. Therefore, we assessed that the depth of the withdrawal was appropriately positioned in Andong Reservoir, so as to withdraw the turbid water effectively from the reservoir.

A Study on the H2 Oxidation over Pt/TiO2, SO2 Poisoning and Regeneration (Pt/TiO2의 HS 산화반응 및 SO2 피독과 재생 방안 연구)

  • Lee, Dong Yoon;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.731-736
    • /
    • 2019
  • In this article, Pt/TiO2 was manufactured in the form of powder and honeycomb, and the influence of SO2, which is a poisonous substance to catalyst, and regeneration method were investigated. The catalytic activity of Pt/TiO2 before and after the exposure to SO2 was also compared. The initial activity of Pt/TiO2 was proportional to the injected H2 concentration (1~5%). And the optimum temperature of the catalyst and conversion rate of H2 were 183 ℃ and 95%, respectively. It was confirmed that when exposing 2,800 ppm of SO2 to the powder and honeycomb Pt/TiO2, the performance of catalyst was not measurable and also 0.69% sulfur (S) remained on the catalyst surface. As a result of the cleaning and heat treatment for the poisoning catalyst, the activity of the powder catalyst exhibited a conversion rate of H2 greater than 96%. Whereas, the honeycomb catalyst showed a conversion rate of H2 greater than 95% when it was regenerated through the heat treatment of H2 or air atmosphere.

Inactivation of Indicating Microorganisms in Ballast Water Using Chlorine Dioxide (이산화염소를 이용한 선박평형수 내 지표 미생물 불활성화)

  • Park, Jong-Hun;Sim, Young-Bo;Kang, Shin-Young;Kim, Sang-Hyoun
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.3
    • /
    • pp.111-117
    • /
    • 2018
  • Disinfection of ballast water using chlorine dioxide was investigated under various initial microorganism contents, dose concentrations and pH values. Kinetics of microorganism inactivation and byproduct generation of chlorine dioxide treatment were compared with the chlorine treatment. Results of treatments with chlorine dioxide concentrations of 0 to $10mg\;Cl_2/L$ showed that The optimum concentration of chlorine dioxide required for disinfection of ballast water was 1 mg/L. The difference among the second order reaction constants for bacterial disinfection at pH 7.2 to 9.2 for chlorine dioxide was less than 5% for both bacteria. This result implied that the bactericidal effects of chlorine dioxide was independent of the pH in the examined range. On the other hand, the inactivation kinetics of chlorine for E. coli and Enterococcus decreased by 17% and 25%, respectively, when pH increased from 7.2 to 9.2. The bactericidal power of chlorine dioxide was superior to sodium hypochlorite above pH 8.2, the average pH value of sea water. Furthermore, treatments of chlorine dioxide generated less harmful byproducts than chlorine and had a long-term disinfection effect on bacteria and phytoplankton from the results of experiment for 30 days. Chlorine dioxide would be a promising alternative disinfectant for ballast water.

Assessment of New Algicide Thiazolidinedione (TD49) for the Control of Marine Red Tide Organisms (해양적조생물제어를 위한 살조물질 Thiazolidinedione 유도체(TD49) 평가)

  • Baek, Seung-Ho;Jang, Min-Chul;Joo, Hae-Mi;Son, Moon-Ho;Cho, Hoon;Kim, Young-Ok
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • Worldwide development of harmful algal blooms causes serious problem for public health and fisheries industries. To evaluate the algicidal impact on the harmful algae bloom species in aquatic ecosystems of coast, a new algicide thiazolidinedione derivative (TD49) were tentatively examined in the growth stages (i.e., lag, logarithmic and stationary phase) of rapidophyceae $Heterosigma$ $akashiwo$, $Chattonella$ $marina$ and $Chattonella$ sp..Three strains could easily destroy in the lag phase due to relatively weak cell walls than those of the logarithmic and stationary phase. It is thought that inoculation of TD49 substances into initial or developmental natural blooms with a threshold concentration ($2{\mu}M$) can maximize the algicidal activity. Also, bio-chemical assays revealed that the algicidal substances from all culture strains were likely to be extracellular substances because those cells have easily destroyed in cell walls. On the other hand, natural zooplankton communities were influenced within the exposure experiments of $2{\mu}M$, which is showed the maximum algcidal activity of tested organisms. These results indicate that although the TD49 substance is potential agents for the control of $H.$ $akashiwo$, $C.$ $marina$ and $Chattonella$ sp. in the enclosed eutrophic bay and coastal water, more detailed research of acute toxicity effect on high trophic organism in marine ecosystems need to be conducted.

Changes in Quality Characteristics of Soybean Paste Doenjang with Addition of Garlic during Fermentation (마늘 첨가 된장의 숙성 중 품질특성 변화)

  • Kang, Jae-Ran;Kim, Gyeong-Min;Hwang, Cho-Rong;Cho, Kye-Man;Hwang, Chung-Eun;Kim, Jeong-Hwan;Kim, Jong-Sang;Shin, Jung-Hye
    • Korean journal of food and cookery science
    • /
    • v.30 no.4
    • /
    • pp.435-443
    • /
    • 2014
  • In this study, we investigated the quality characteristics of Korean soybean paste, Doenjang, fermented for 6 weeks at room temperature with the addition of 0, 10, 20 and 30% garlic. Samples were analyzed in one-week intervals. The lightness decreased in all samples as the fermentation period and garlic concentration increased. Yellow index decreased in weeks 5~6 compared with weeks 0-1, for which the values were lower for the garlic-added Doenjang than the control. The pH increased, greatly reducung the acidity in week 1 compared with week 0. Significant differences in the pH and acidity were not observed among the sample groups. Amino type nitrogen contents increased continuously up to weeks 5, displaying no significant differences among the sample groups at weeks 5 and 6. In addition, reduction in the sugar content increased depending on the fermentation period. It increased in all sample groups by about 2.5 times after 6 weeks compared with the initial levels. Isoflavone content was also reduced generally depending on the fermentation period. In the early fermentation periods, the aglycone contents were the higher than the glycosides, while the glycoside contents increased over the fermentation period. The presence of Bacillus was not significantly different among the garlic added groups, but yeast was lower in the Doenjang with high garlic content.

Application of SNCR/SCR Combined process for effective operation of SCR Process

  • 최성우;최상기
    • Journal of Environmental Science International
    • /
    • v.12 no.1
    • /
    • pp.47-54
    • /
    • 2003
  • This paper have examined the optimum combination of SNCR and SCR by varying SNCR injection temperature and NSR ratio along with SCR space velocity. NOx reduction experiments using a SNCR/SCR combined process have been conducted in simple NO/NH$_3$/O$_2$ gas mixtures. Total gas flow rate was kept constant 4 liter/min throughout the SNCR and SCR reactors, where initial NOx concentration was 500 ppm in the presence of 5% O$_2$. Commercial catalyst, sulfated V$_2$O$\_$5/-WO$_3$/TiO$_2$, was used for SCR NOx reduction. The residence time and space velocity were around 1.67 sec, 2,400 h$\^$-1/ and 6,000 h$\^$-1/ in the SNCR and SCR reactors, respectively. SNCR NOx reduction effectively occurred in a temperature window of 900-950$^{\circ}C$. About 88% NOx reduction was achieved with an optimum temperature of 950$^{\circ}C$ and NSR=1.5. SCR NOx reduction using commercial V$_2$O$\_$5/-WO$_3$-SO$_4$/TiO$_2$ catalyst occurred in a temperature window of 200-450$^{\circ}C$ 80-98% NOxreduction was possible with SV=2400 h$\^$-1/ and a molar ratio of 1.0-2.0. A SNCR/SCR(SV=6000 h$\^$-1/) combined process has shown same NOx reduction compared with a stand-alone SCR(SV=2400 h$\^$-1/) unit process of 98% NOx reduction. The NH$_3$-based chemical could routinely achieve SNCR/SCR combined process total NOx reductions of 98% with less than 5 ppm NH$_3$ slip at NSR ranging from about 1.5 to 2.0, SNCR temperature of 900$^{\circ}C$-950$^{\circ}C$, and SCR space velocity of 6000 h$\^$-1/. Particularly, more than 98% NOx reduction was possible using the combined process under the conditions of T$\_$SNCR/=950$^{\circ}C$, T$\_$SCR/=350$^{\circ}C$, 5% O$_2$, SV=6000 h$\^$-1/ and NH$_3$/NOx=1.5. A catalyst volume was about three times reduced by SNCR/SCR combined process compared with SCR process under the same controlled conditions.

Growth Characteristics and Optimal Culture Conditions of Bacterial Strains Degrading Ethylene Glycol and Terephthalic Acid in Polyester Weight Loss Wastewater (Polyester 감량폐수 중에 존재하는 Ethylene Glycol과 Terephthalic Acid를 분해하는 Bacteria 균주들의 성장특성과 최적 배양조건)

  • 김정목;김재훈조무환
    • KSBB Journal
    • /
    • v.8 no.2
    • /
    • pp.156-163
    • /
    • 1993
  • Strains degrading ethylene glycol(EG) and terephthalic acid(TPA) were isolated from water systems, and identified as Pseudomonas sp. They were named as Pseudomonas sp. EAW for EG and as Pseudomonas sp. TS2 for TPA. The optimal culture conditions of temperature, pH and nitrogen source were found to be $35^{\circ}C$, 7.5 and ammonium sulfate, respectively. The growth of strains and removal efficiency was slightly promoted by trace elements such as niacin and biotin in case of EG, and by trace elements such as $Na_2MoO_4{\cdot}2H_2O$ and thiamin i case of TPA. With increasing inoculation sloe for batch culture, the removal efficiency of EG by the strain EAW was conspicuously increased, while the removal efficiency of TPA by the strain TS2 was not changed as much as that of EG. The growth rate of the strain EAW was much more decreased than that of the strain TS2 in the enrichment medium, as the frequency of repeated-batch culture in the rich-medium increased. in case of real wastewater, growth rate and removal efficiencies of EG and TPA were lower than those in the enrichment medium. $COD_{Mn}\;and\;COD_{Cr}$ removal efficiencies after 48 hrs batch culture in real wastewater were 89% and 93%, respectively. The specific growth rate was inhibited when the initial concentration of EG or TPA was more than 25g/L.

  • PDF