DOI QR코드

DOI QR Code

Inactivation of Indicating Microorganisms in Ballast Water Using Chlorine Dioxide

이산화염소를 이용한 선박평형수 내 지표 미생물 불활성화

  • Park, Jong-Hun (Department of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Sim, Young-Bo (School of Civil and Environmental Engineering, Yonsei University) ;
  • Kang, Shin-Young (Department of Environmental Engineering, Daegu University) ;
  • Kim, Sang-Hyoun (School of Civil and Environmental Engineering, Yonsei University)
  • 박종훈 (고려대학교 건축사회환경공학부) ;
  • 심영보 (연세대학교 사회환경시스템공학부) ;
  • 강신영 (대구대학교 환경공학과) ;
  • 김상현 (연세대학교 사회환경시스템공학부)
  • Received : 2018.06.21
  • Accepted : 2018.08.03
  • Published : 2018.09.30

Abstract

Disinfection of ballast water using chlorine dioxide was investigated under various initial microorganism contents, dose concentrations and pH values. Kinetics of microorganism inactivation and byproduct generation of chlorine dioxide treatment were compared with the chlorine treatment. Results of treatments with chlorine dioxide concentrations of 0 to $10mg\;Cl_2/L$ showed that The optimum concentration of chlorine dioxide required for disinfection of ballast water was 1 mg/L. The difference among the second order reaction constants for bacterial disinfection at pH 7.2 to 9.2 for chlorine dioxide was less than 5% for both bacteria. This result implied that the bactericidal effects of chlorine dioxide was independent of the pH in the examined range. On the other hand, the inactivation kinetics of chlorine for E. coli and Enterococcus decreased by 17% and 25%, respectively, when pH increased from 7.2 to 9.2. The bactericidal power of chlorine dioxide was superior to sodium hypochlorite above pH 8.2, the average pH value of sea water. Furthermore, treatments of chlorine dioxide generated less harmful byproducts than chlorine and had a long-term disinfection effect on bacteria and phytoplankton from the results of experiment for 30 days. Chlorine dioxide would be a promising alternative disinfectant for ballast water.

선박평형수 처리에의 적용을 목적으로 다양한 미생물 농도, 소독제 주입량, pH 조건에서 이산화염소의 소독 효과를 조사하였다. 살균 반응 속도 및 소독 부산물 생성 여부는 선박평형수 처리에 일반적으로 사용되는 소독제인 염소와 비교 평가하였다. 선박평형수 배출 규제 항목인 E. coli 와 Enterococcus의 이산화염소에 의한 사멸 효과는 유사 2차 반응으로 모사하였다. 선박평형수 처리를 위한 최적 이산화염소 투입 농도는 1 mg/L으로 나타났다. pH 7.2 - 9.2 범위에서 이산화염소의 살균 반응 속도 상수의 변화폭이 5% 이내였던데 비해 같은 유효염소 농도에서의 염소의 살균 반응 속도 상수는 E. coli 기준 17%, Enterococcus 기준 25% 감소하여 약 염기성인 선박평형수의 소독에 이산화염소가 염소에 비해 효과적임을 확인하였다. 또한 생태계를 교란할 수 있는 소독 부산물 생성에 있어서도 염소에 비해 현격히 낮은 결과를 보였다. 소독 후 장기 보관 시 30일까지는 지표 세균 및 플랑크톤의 재증식은 발견되지 않았다. 이산화염소는 선박평형수에 적합한 소독제로 판단된다.

Keywords

References

  1. American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF) 1998. Standard Methods for the Examination of Water and Wastewater, 20th Edition. United Book Press, Inc., Baltimore, MD, USA.
  2. American Society for Testing and Materials (ASTM) 2013. Standard Practice for the Preparation of Substitute Ocean Water, ASTM D1141-98. West Conshohocken, PA, USA.
  3. Benarde, M.A., Snow, W.B., Olivieri, V.P., and Davidson, B. 1967. Kinetics and mechanism of bacterial disinfection by chlorine dioxide. American Society for Microbiology 15(2): 257-265.
  4. Cha, H.-G., Seo, M.-H., Lee, H.-Y., Lee, J.-H., Lee, D.-S., Shin, K.-S., and Choi, K.-H. 2015. Enhancing the efficacy of electrolytic chlorination for ballast water treatment by adding carbon dioxide. Marine Pollution Bulletin 95(1): 315-323. https://doi.org/10.1016/j.marpolbul.2015.03.025
  5. Creswell, L. 2010. Phytoplankton Culture for Aquaculture Feed. Pub. No. 5004, Southern Regional Aquaculture Center (SRAC), USA.
  6. International Maritime Organization (IMO) 2004. International Convention for the Control and Management of Ships' Ballast Water and Sediments. Document BWM/CONF/36, 16 February 2004. IMO, London, UK.
  7. Latarche, M. 2014. Ballast Water Treatment: A Guideline to Regulation and Technology. ShipInsight, Surrey, UK.
  8. Lee, K. and Lee, W. 2015. Effects of pH, water temperature and chlorine dosage on the formation of disinfection byproducts at water treatment plant. Journal of Korean Society of Environmental Engineers 37(9): 505-510. (in Korean) https://doi.org/10.4491/KSEE.2015.37.9.505
  9. Maranda, L., Cox, A.M., Campbell, R.G., and Smith, D.C. 2013. Chlorine dioxide as a treatment for ballast water to control invasive species: Shipboard testing. Marine Pollution Bulletin 75: 76-89. https://doi.org/10.1016/j.marpolbul.2013.08.002
  10. Metcalf and Eddy. 2014. Wastewater Engineering Treatment and Reuse, 5th ed., McGraw-Hill, Singapore.
  11. Simon, F.X., Berdalet, E., Gracia, F.A., Espana. F., and Llorens, J. 2014. Seawater disinfection by chlorine dioxide and sodium hypochlorite. A comparison of biofilm formation. Water, Air, & Soil Pollution 225: 1921-1. https://doi.org/10.1007/s11270-014-1921-1
  12. Waite, T.D., Kazumi, J., Lane, P.V.Z., Farmer, L.L., Smith, S.G., Smith, S.L., Hitchcock, G., and Capo, T.R. 2003. Removal of natural populations of marine plankton by a large-scale ballast water treatment system. Marine Ecology Progress Series 258: 51-63. https://doi.org/10.3354/meps258051