• 제목/요약/키워드: Initial Angle of Attack

검색결과 27건 처리시간 0.02초

Analysis of the two dimensional sheet debris flight equations: initial and final state

  • Scarabino, A.;Giacopinelli, P.
    • Wind and Structures
    • /
    • 제13권2호
    • /
    • pp.109-125
    • /
    • 2010
  • This work presents some analytical and numerical results of a dynamic analysis of the dimensionless 2-D sheet flight equations. Two empirical models for aerodynamic forces and moments are used and compared. Results show that the initial condition of rest is always unstable, and for long times three distinct flight regimes are possible, depending on the initial angle of attack, the Tachikawa number, Ta (in fact, the parameter chosen was its inverse, ${\Omega}$), and a mass ratio ${\Phi}$. The final orbits in the velocity space and their maximum kinetic energy are compared with a theoretical asymptotic state of the motion equations, and some design considerations are proposed.

항력리본이 장착된 자탄의 공력 해석 연구 (A STUDY ON AERODYNAMIC ANALYSIS OF A SUB-MUNITION WITH DRAG RIBBON)

  • 강승희;김진석;안성호
    • 한국전산유체공학회지
    • /
    • 제16권4호
    • /
    • pp.14-20
    • /
    • 2011
  • The initial unfolding motion simulation of a sub-munition with drag ribbon for precision guidance and reliable operation has been investigated by analyzing its unsteady aerodynamic load and fluid structure interaction. The effects of change in the ribbon configuration and flow angle are numerically studied using a commercial software "XFLOW" based on Lattice-Boltzmann Method. It is shown that the motion is affect adversely by the separation bubble formed posterior part of the fuselage. The rolling moment for arming of the sub-munition is increased with angle of attack and rotational movement.

받음각 효과를 고려한 발사체 날개단면의 초음속극초음속 비선형 유체유발진동해석 (Nonlinear Flow-Induced Vibration Analysis of Typical Section in Supersonic and Hypersonic Flows with Angle-of-Attack Effect)

  • 김동현;김유성;윤명훈
    • 한국군사과학기술학회지
    • /
    • 제10권4호
    • /
    • pp.12-19
    • /
    • 2007
  • In this study, nonlinear flow-induced vibration(flutter) analyses of a 2-DOF launch vehicle airfoil have been conducted in supersonic and hypersonic flow regimes. Advanced aeroelastic analysis system based on computational fluid dynamics and computational structural dynamics is successfully developed and applied to the present analyses. Nonlinear unsteady aerodynamic analyses considering strong shock wave motions are conducted using inviscid Euler equations. Aeroelastic governing equations for the 2-DOF airfoil system is solved by the coupled integration method with interactive CFD and CSD computation procedures. Typical wedge type airfoil shapes with initial angle-of-attacks are considered to investigate the nonlinear flutter characteristics in supersonic(15). Also, the comparison of detailed aeroelastic responses are practically presented as numerical results.

CUS 복합재료 항공기 날개의 에일러론 역전 특성 연구 (A Study on the Aileron Reversal Characteristics of CUS Composite Aircraft Wings)

  • 김근택;송오섭
    • 항공우주기술
    • /
    • 제8권2호
    • /
    • pp.149-159
    • /
    • 2009
  • 본 논문은 Circumferentially Uniform Stiffness (CUS) 형상의 복합재료 얇은 벽 보로 모델링한 항공기 날개의 에일러론 역전 특성에 대해 해석적인 연구를 수행하였다. CUS 복합재료 날개의 에일러론 역전 특성을 연구하기 위해, 신장-비틀림 구조 연성, 날개의 가로세로비, 에일러론 대 날개의 시위비 및 길이비, 초기 받음각, Sweep 각 등을 고려하여야 한다. 얇은 벽 보의 항공기 날개에 대한 보다 더 효과적인 설계를 위해, 에일러론 역전 특성과 관련한 연구 결과는 매우 중요한 역할을 담당할 수 있을 것이다.

  • PDF

Aerodynamic force characteristics and galloping analysis of iced bundled conductors

  • Lou, Wenjuan;Lv, Jiang;Huang, M.F.;Yang, Lun;Yan, Dong
    • Wind and Structures
    • /
    • 제18권2호
    • /
    • pp.135-154
    • /
    • 2014
  • Aerodynamic characteristics of crescent and D-shape bundled conductors were measured by high frequency force balance technique in the wind tunnel. The drag and lift coefficients of each sub-conductor and the whole bundled conductors were presented under various attack angles of wind. The galloping possibility of bundled conductors is discussed based on the Den Hartog criterion. The influence of icing thickness, initial ice accretion angle and sub-conductor on the aerodynamic properties were investigated. Based on the measured aerodynamic force coefficients, a computationally efficient finite element method is also implemented to analyze galloping of iced bundled conductors. The analysis results show that each sub-conductor of the bundled conductor has its own galloping feature due to the use of aerodynamic forces measured separately for every single sub-conductors.

Quasi Steady Stall Modelling of Aircraft Using Least-Square Method

  • Verma, Hari Om;Peyada, N.K.
    • International Journal of Aerospace System Engineering
    • /
    • 제7권1호
    • /
    • pp.21-27
    • /
    • 2020
  • Quasi steady stall is a phenomenon to characterize the aerodynamic behavior of aircraft at high angle of attack region. Generally, it is exercised from a steady state level flight to stall and its recovery to the initial flight in a calm weather. For a theoretical study, such maneuver is demonstrated in the form of aerodynamic model which consists of aircraft's stability and control derivatives. The current research paper is focused on the appropriate selection of aerodynamic model for the maneuver and estimation of the unknown model coefficients using least-square method. The statistical accuracy of the estimated parameters is presented in terms of standard deviations. Finally, the validation has been presented by comparing the measured data to the simulated data from different models.

Linear controller design for the longitudinal model of a reusable launch vehicle X-33

  • Woo, Young-Tae;Kim, Jae-Jin;Kim, Young-Chol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1978-1982
    • /
    • 2005
  • In this paper, a linear controller is designed for the longitudinal model of X-33 in TAEM (The Terminal Area Energy Management) phase. The CRA (Characteristic Ratio Assignment) is used as the continuous time design method such that the output response of X-33 control system tracks the reference command. The performance of the proposed controller is evaluated through the step response. Also simulation results show that the initial state of the plant is dominantly affected by the poles and zeros of the plant.

  • PDF

Guidance Law for Agile Turn of Air-to-Air Missile During Boost Phase

  • Han, Seungyeop;Bai, Ji Hoon;Hong, Seong-Min;Roh, Heekun;Tahk, Min-Jea;Yun, Joongsup;Park, Sanghyuk
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권4호
    • /
    • pp.709-718
    • /
    • 2017
  • This paper proposes the guidance laws for an agile turn of air-to-air missiles during the initial boost phase. Optimal solution for the agile turn is obtained based on the optimal control theory with a simplified missile dynamic model. Angle-of-attack command generating methods for completion of agile turn are then proposed from the optimal solution. Collision triangle condition for non-maneuvering target is reviewed and implemented for update of terminal condition for the agile turn. The performance of the proposed method is compared with an existing homing guidance law and the minimum-time optimal solution through simulations under various initial engagement scenarios. Simulation results verify that transition to homing phase after boost phase with the proposed method is more effective than direct usage of the homing guidance law.

Nonlinear Characteristics of Low-speed Flow Induced Vibration for the Safety Design of Micro Air Vehicle

  • 장태진;김동현;이인
    • 한국소음진동공학회논문집
    • /
    • 제12권11호
    • /
    • pp.873-881
    • /
    • 2002
  • The fluid induced vibration (FIV) phenomena of an equivalent airfoil system of MAV have been investigated in low Reynolds number flow region. Unsteady flows with viscosity are computed using two-dimensional incompressible Navier-Stokes equations. The present fluid/structure interaction analysis is based on one of the most accurate computational approach with computational fluid dynamics (CFD) and computational structural dynamics (CSD) techniques. The highly nonlinear fluid/structure interaction phenomena due to severe flow separations have been analyzed for the low Reynolds region that has a dominancy of flow viscosity. The effects of Reynolds number and initial angle of attack on the fluid/structure coupled vibration instability are shown and the qualitative trend of FIV phenomenon is investigated.

풍동시험과 CFD 해석 결과를 반영한 유도무기 조종날개 공력계수 모델링 기법 연구 (A Study on the Modeling Method of Missile Fin Aerodynamic Coefficient using Wind Tunnel Test and CFD)

  • 임경진
    • 한국군사과학기술학회지
    • /
    • 제22권3호
    • /
    • pp.360-368
    • /
    • 2019
  • A study on aerodynamic modeling was performed to predict the hinge moments required for initial design of missile. Fin aerodynamic coefficients were modeled using the equivalent angle of attack method based on the wind tunnel test. In addition, CFD analysis was performed to calculate the dynamic pressure around the body and improve the accuracy of aerodynamic coefficients. The aerodynamic coefficient accuracy was verified by comparisons of the coefficient acquired from wind tunnel test and prediction of flow conditions, not involved in the model built-up. It was confirmed that fin aerodynamic coefficients can be predicted effectively by using the proposed method.