• Title/Summary/Keyword: Inhomogeneous Materials

Search Result 165, Processing Time 0.025 seconds

Evaluation of Fracture Toughness for SA508 Gr. 3 Reactor Pressure Vessel Steel Using Bimodal Master Curve Approach (이봉분포 마스터커브를 이용한 SA508 Gr. 3 원자로용기강의 파괴인성 평가)

  • Kim, Jong Min;Kim, Min Chul;Lee, Bong Sang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.2
    • /
    • pp.60-66
    • /
    • 2017
  • The standard master curve (MC) approach has the major limitation because it is only applicable to homogeneous datasets. In nature, materials are macroscopically inhomogeneous and involve scatter of fracture toughness data due to various deterministic material inhomogeneity and random inhomogeneity. RPV(reactor pressure vessel) steel has different fracture toughness with varying distance from the inner surface of the wall due to cooling rate in manufacturing process; deterministic inhomogeneity. On the other hand, reference temperature, $T_0$, used in the evaluation of fracture toughness is acting as a random parameter in the evaluation of welding region; random inhomogeneity. In the present paper, four regions, the surface, 1/8T, 1/4T and 1/2T, were considered for fracture toughness specimens of KSNP (Korean Standard Nuclear Plant) SA508 Gr. 3 steel to investigate deterministic material inhomogeneity and random inhomogeneity. Fracture toughness tests were carried out for four regions and three test temperatures in the transition region. Fracture toughness evaluation was performed using the bimodal master curve (BMC) approach which is applicable to the inhomogeneous material. The results of the bimodal master curve analyses were compared with that of conventional master curve analyses. As a result, the bimodal master approach considering inhomogeneous materials provides better description of scatter in fracture toughness data than conventional master curve analysis. However, the difference in the $T_0$ determined by two master curve approaches was insignificant.

A Study on Fracture Property of Adhesive Interface at Tapered Double Cantilever Beam with Inhomogeneous Composite Material due to Loading Conditions of In-plane and Out-plane (면내 및 면외 하중 조건들에 따른 이종 복합 소재를 가진 경사진 이중외팔보에서의 접착계면의 파괴 특성 연구)

  • Lee, Jung-Ho;Kim, Jae-Won;Cheon, Seong-Sik;Cho, Jae-Ung
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.401-407
    • /
    • 2020
  • At the engineering and industrial areas, the lightweight composite material has been substituted with the metals, such as steel at the structural parts. This composite material has been applied by the adhesive bonding method, as well as the joint methods with rivets, welds or bolts and nuts. The study on the strength characteristics of adhesive interface is necessarily required in order to apply the method to composite materials. CFRP specimens as the fiber reinforced plastic composites were manufactured easily and this study was carried out. The static experiments were performed under the loading conditions of in-plane and out-plane shears with the inhomogeneous composite TDCB specimens with CFRP, aluminum (Al6061), and aluminum foam (Al-foam). Through the result of this study, the durability on the inhomogeneous composite structure with adhesive interface was investigated by examining the fracture characteristic and the point in time.

Evaluation of Planning Dose Accuracy in Case of Radiation Treatment on Inhomogeneous Organ Structure (불균질부 방사선치료 시 계획 선량의 정확성 평가)

  • Kim, Chan Yong;Lee, Jae Hee;Kwak, Yong Kook;Ha, Min Yong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.137-143
    • /
    • 2013
  • Purpose: We are to find out the difference of calculated dose of treatment planning system (TPS) and measured dose in case of inhomogeneous organ structure. Materials and Methods: Inhomogeneous phantom is made with solid water phantom and cork plate. CT image of inhomogeneous phantom is acquired. Treatment plan is made with TPS (Pinnacle3 9.2. Royal Philips Electronics, Netherlands) and calculated dose of point of interest is acquired. Treatment plan was delivered in the inhomogeneous phantom by ARTISTE (Siemens AG, Germany) measured dose of each point of interest is obtained with Gafchromic EBT2 film (International Specialty Products, US) in the gap between solid water phantom or cork plate. To simulate lung cancer radiation treatment, artificial tumor target of paraffin is inserted in the cork volume of inhomogeneous phantom. Calculated dose and measured dose are acquired as above. Results: In case of inhomogeneous phantom experiment, dose difference of calculated dose and measured dose is about -8.5% at solid water phantom-cork gap and about -7% lower in measured dose at cork-solid water phantom gap. In case of inhomogeneous phantom inserted paraffin target experiment, dose difference is about 5% lower in measured dose at cork-paraffin gap. There is no significant difference at same material gap in both experiments. Conclusion: Radiation dose at the gap between two organs with different electron density is significantly lower than calculated dose with TPS. Therefore, we must be aware of dose calculation error in TPS and great care is suggested in case of radiation treatment planning on inhomogeneous organ structure.

  • PDF

Ray Tracing of a Plastic Aspheric Lens by Considering Index Distribution Induced from Injection Molding (사출성형시 굴절율 변화를 고려하기 위한 플라스틱 비구면 렌즈의 광선추적기법)

  • Eom, Hye-Ju;Park, Keun
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.128-134
    • /
    • 2009
  • The present study covers an integrated simulation method to evaluate optical performance of an aspheric plastic lens by connecting an injection molding analysis with a ray tracing simulation. Traditional ray tracing methods have based on the assumption that the optical properties of a lens are homogeneous throughout the entire volume. This assumption is to a certain extent unrealistic for injection-molded plastic lenses because material properties vary at every point due to the injection molding effects. To take into account the effects of the inhomogeneous optical properties of the molded lens, a numerical scheme is developed to calculate the distribution of refractive index induced from the injection molding process. This index distribution is then reflected onto CODE $V^{(R)}$ simulation and used to calculate ray paths in inhomogeneous media. The proposed tracing scheme is implemented on the tracing of an aspheric lens for a mobile phone camera module.

Determination of Dose Distribution under Nonequivalent Condition by Prosthesis in Radiotherapy (방사선 치료시 인공고관절 삽입에 의한 불균질면에서의 선량분포 평가)

  • Lee, Joon-Il;Kim, Sung-Hwan
    • Journal of radiological science and technology
    • /
    • v.21 no.2
    • /
    • pp.43-46
    • /
    • 1998
  • When a patient was irradiated with prosthetic hip, the dose distribution was changed according to inhomogeneous materials. The density, effective atomic number, and the composition of material had influence on absorbed dose distribution. In this study, the influence of inhomogeneous material(Ti) was measured using a polyethylene phantom, which consisted of various diameter of titanium, with film dosimetry. As a result, the backward dose showed 29.5% increas by backscattering, the forward dose showed 28% decreas by absorption, and the side dose showed 7% increas by scattering, when 25 mm diameter Ti was used. In addition forward dose was in inverse proportion to the thickness of prosthetic material. When the prosthetic hip of patient is in an irradiated field, we must carefully study the absorbed dose distribution.

  • PDF

Integrity Evaluation for 3D Cracked Structures(I) (3차원 균열을 갖는 구조물에 대한 건전성 평가(I))

  • Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3295-3300
    • /
    • 2012
  • Three Dimensional finite element method (FEM) was used to obtain the stress intensity factor for subsurface cracks and surface cracks existing in inhomogeneous materials. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model. Nodes are generated by the bubble packing, and ten-noded quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. To examine accuracy and efficiency of the present system, the stress intensity factor for a semi-elliptical surface crack in a plate subjected to uniform tension is calculated, and compared with Raju-Newman's solutions. Then the system is applied to analyze interaction effects of two dissimilar semi-elliptical cracks in a plate subjected to uniform tension.

Homogenization Analysis for Calculating Elastic Modulus of Composite Geo-materials (복합지반물질의 탄성계수 산정을 위한 균질화 해석)

  • Seo Yong-Seok;Yim Sung-Bin;Baek Yong;Kim Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.16 no.3 s.49
    • /
    • pp.227-233
    • /
    • 2006
  • Bedrock is inhomogeneous for its genetically diverse origins and geological conditions when it forms, and especially, conglomerates and core-stones are one of these typical composite geo-materials composed of weak matrixes and strong pebbles. Mechanical properties of these composite bedrocks, like a conglomerate, generally vary depending on the mechanical properties and distributions of pebbles and the matrix. Therefore, regarding the consequence of understanding mechanical property of bedrocks in the designing slopes, tunnels, and other engineering facilities, empirical rock classification methods generally applied in the mechanical property modeling may not be suitable and rather, we may need some other classification methods, or tests more specific for these inhomogeneous composite bedrocks. This study includes a series of analyses to see elastic behaviors and modulus of composite geo-materials using homogenization theory. Forty nine case models were made for the elastic analysis with considering 5 factors such as gravel content, gravel size, strength of matrix, sorting and dip angle. The results analyzed are applicable to calculate elastic modulus of composite geo-materials as conglomerates and core-stones.

Effect of Inhomogeneity correction for lung volume model in TPS (Lnug Volume을 모델로 한 방사선치료계획 시 불균질 조직 보정에 따른 효과)

  • Chung SeYoung;Lee SangRok;Kim YoungBum;Kwon YoungHo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.1
    • /
    • pp.57-65
    • /
    • 2004
  • Introduction : The phantom that includes high density materials such as steel was custom-made to fix lung and bone in order to evaluation inhomogeneity correction at the time of conducting radiation therapy to treat lung cancer. Using this, values resulting from the inhomogeneous correction algorithm are compared on the 2 and 3 dimensional radiation therapy planning systems. Moreover, change in dose calculation was evaluated according to inhomogeneous by comparing with the actual measurement. Materials and Methods : As for the image acquisition, inhomogeneous correction phantom(Pig's vertebra, steel(8.21g/cm3), cork(0.23 g/cm3)) that was custom-made and the CT(Volume zoom, Siemens, Germany) were used. As for the radiation therapy planning system, Marks Plan(2D) and XiO(CMS, USA, 3D) were used. To compare with the measurement value, linear accelerator(CL/1800, Varian, USA) and ion chamber were used. Image, obtained from the CT was used to obtain point dose and dose distribution from the region of interest (ROI) while on the radiation therapy planning device. After measurement was conducted under the same conditions, value on the treatment planning device and measured value were subjected to comparison and analysis. And difference between the resulting for the evaluation on the use (or non-use) of inhomogeneity correction algorithm, and diverse inhomogeneity correction algorithm that is included in the radiation therapy planning device was compared as well. Results : As result of comparing the results of measurement value on the region of interest within the inhomogeneity correction phantom and the value that resulted from the homogeneous and inhomogeneous correction, gained from the therapy planning device, margin of error of the measurement value and inhomogeneous correction value at the location 1 of the lung showed $0.8\%$ on 2D and $0.5\%$ on 3D. Margin of error of the measurement value and inhomogeneous correction value at the location 1 of the steel showed $12\%$ on 2D and $5\%$ on 3D, however, it is possible to see that the value that is not correction and the margin of error of the measurement value stand at $16\%$ and $14\%$, respectively. Moreover, values of the 3D showed lower margin of error compared to 2D. Conclusion : Revision according to the density of tissue must be executed during radiation therapy planning. To ensure a more accurate planning, use of 3D planning system is recommended more so than the 2D Planning system to ensure a more accurate revision on the therapy plan. Moreover, 3D Planning system needs to select and use the most accurate and appropriate inhomogeneous correction algorithm through actual measurement. In addition, comparison and analysis through TLD or film dosimetry are needed.

  • PDF

Evaluation of the Secondary Particle Effect in Inhomogeneous Media for Proton Therapy Using Geant4 Based MC Simulation (Geant4 몬테칼로 시뮬레이션을 활용한 불균질 매질에서의 양성자의 이차입자 영향 분석)

  • Park, So-Hyun;Jung, Won-Gyun;Rah, Jeong-Eun;Park, Sung-Yong;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.21 no.4
    • /
    • pp.311-322
    • /
    • 2010
  • In proton therapy, the analysis of secondary particles is important due to delivered dose outside the target volume and thus increased potential risk for the development of secondary cancer. The purpose of this study is to analyze the influence of secondary particles from proton beams on fluence and energy deposition in the presence of inhomogeneous material by using Geant4 simulation toolkit. The inhomogeneity was modeled with the condition that the adipose tissue, bone and lung equivalent slab with thickness of 2 cm were inserted at 30% (Plateau region) and 80% (Bragg peak region) dose points of maximum dose in Bragg curve. The energy of proton was varied with 100, 130, 160 and 190 MeV for energy dependency. The results for secondary particles were presented for the fluence and deposited energy of secondary particles at inhomogeneous condition. Our study demonstrates that the fluence of secondary particles is neither influenced insertion of inhomogeneties nor the energy of initial proton, while there is a little effect by material density. The deposited energy of secondary particles has a difference in the position placed inhomogeneous materials. In the Plateau region, deposited energy of secondary particles mostly depends on the density of inserted materials. Deposited energy in the Bragg region, in otherwise, is influenced by both density of inserted material and initial energy of proton beams. Our results suggest a possibility of prediction about the distribution of secondary particles within complex heterogeneity.