• 제목/요약/키워드: Inhalation toxicity test

Search Result 50, Processing Time 0.02 seconds

Inhalation Toxicity Study of H Menthol (Nicotine Free-Tobacco Free) Herbal Cigarettes (H Menthol (Nicotine Free-Tobacco Free) Herbal Cigarette의 흡입독성시험)

  • 강경선;조성대;조종호;김경배;이지해;안남식;정지원;양세란;박준석
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.2
    • /
    • pp.97-105
    • /
    • 2002
  • Nowadays a huge variety of products that aim to assist to quit smoking or reduce addictive symptoms are developed and manufactured with safety evaluation, but the safety of the most recent products of interest which do not contain tobacco and nicotine, and shape cigarettes is not evaluated and guaranteed relatively. This study was carried out to evaluate the single and repeated dose inhalation toxicity and genotoxicity of H menthol (Nicotine free-tobacco free) herbal cigarettes provided by Cigastop Ltd. in ICR mice. In this study, doses which we determined to expose to mice were 40 cigarettes for 6 hours a day to mice in single dose and 20 (high dose), 10 (middle dose) and 5 cigarettes (low dose) a day for 28 days in repeated dose inhalation toxicity, in vivo chromosome aberration test and micronucleus test. The particulate substances from H menthol herbal cigarettes also were gathered and used in the Salmonella typhimurium/microsome assay (Salmonella test; Ames test). We could find neither significant changes between control and treatment groups nor dose-response effects of test material at all except serum Ca level of female middle dose treatment group in repeated dose inhalation toxicity test. In conclusion, H menthol herbal cigarettes, when applied clinically intended dose we used, might not show any toxic and/or mutagenic effect.

  • PDF

Inhalation Toxicity of Bisphenol A and Its Effect on Estrous Cycle, Spatial Learning, and Memory in Rats upon Whole-Body Exposure

  • Chung, Yong Hyun;Han, Jeong Hee;Lee, Sung-Bae;Lee, Yong-Hoon
    • Toxicological Research
    • /
    • v.33 no.2
    • /
    • pp.165-171
    • /
    • 2017
  • Bisphenol A (BPA) is a monomer used in a polymerization reaction in the production of polycarbonate plastics. It has been used in many consumer products, including plastics, polyvinyl chloride, food packaging, dental sealants, and thermal receipts. However, there is little information available on the inhalation toxicity of BPA. Therefore, the aim of this study was to determine its inhalation toxicity and effects on the estrous cycle, spatial learning, and memory. Sprague-Dawley rats were exposed to 0, 10, 30, and $90mg/m^3$ BPA, 6 hr/day, 5 days/week for 8 weeks via whole-body inhalation. Mortality, clinical signs, body weight, hematology, serum chemistry, estrous cycle parameters, performance in the Morris water maze test, and organ weights, as well as gross and histopathological findings, were compared between the control and BPA exposure groups. Statistically significant changes were observed in serum chemistry and organ weights upon exposure to BPA. However, there was no BPA-related toxic effect on the body weight, food consumption, hematology, serum chemistry, organ weights, estrous cycle, performance in the Morris water maze test, or gross or histopathological lesions in any male or female rats in the BPA exposure groups. In conclusion, the results of this study suggested that the no observable adverse effect level (NOAEL) for BPA in rats is above $90mg/m^3$/6 hr/day, 5 days/week upon 8-week exposure. Furthermore, BPA did not affect the estrous cycle, spatial learning, or memory in rats.

Acute and Subchronic Inhalation Toxicity of n-Octane in Rats

  • Sung, Jae-Hyuck;Choi, Byung-Gil;Kim, Hyeon-Yeong;Baek, Min-Won;Ryu, Hyun-Youl;Kim, Yong-Soon;Choi, Young-Kuk;Yu, Il-Je;Song, Kyung-Seuk
    • Safety and Health at Work
    • /
    • v.1 no.2
    • /
    • pp.192-200
    • /
    • 2010
  • Objectives: We have investigated the toxic effects of the inhalation of subchronic and acute levels of n-octane. Methods: The rats were exposed to n-octane of 0, 2.34, 11.68 and 23.36 mg/L (n = 5 rats/group/gender) in an acute inhalation test (Organization for Economic Co-operation and Development (OECD) TG 403), or to 0, 0.93, 2.62 and 7.48 mg/L (n = 10 rats/group/gender) for a subchronic inhalation test (OECE TG 413), to establish a national chemical management system consistent with the Globally Harmonized Classification System (GHS). Results: Acutely-exposed rats became lethargic but recovered following discontinuation of inhalation. Other clinical symptoms such as change of body weight and autopsy finds were absent. The LC50 for the acute inhalation toxicity of n-octane was determined to exceed 23.36 mg/L and the GHS category was 'not grouping'. Subchronically-treated rats displayed no significant clinical and histopathological differences from untreated controls; also, target organs were affected hematologically, biochemically and pathologically. Therefore, the no observable adverse effect level was indicated as exceeding 7.48 mg/L and the GHS category was 'not grouping' for the specific target organ toxicity upon repeated exposure. Conclusion: However, n-octane exposure should be controlled to be below the American Conference of Industrial Hygienists recommendation (300 ppm) to prevent inhalation-related adverse health effects of workers.

Subacute Inhalation Toxicity of 3-Methylpentane

  • Chung, Yong Hyun;Shin, Seo-Ho;Han, Jeong Hee;Lee, Yong-Hoon
    • Toxicological Research
    • /
    • v.32 no.3
    • /
    • pp.245-250
    • /
    • 2016
  • 3-Methylpentane ($C_6H_{14}$, CAS No. 96-14-0), isomer of hexane, is a colorless liquid originating naturally from petroleum or natural gas liquids. 3-Methylpentane has been used as a solvent in organic synthesis, as a lubricant, and as a raw material for producing carbon black. There is limited information available on the inhalation toxicity of 3-methylpentane, and the aim of this study was to determine its subacute inhalation toxicity. According to OECD Test Guideline 412 (subacute inhalation toxicity: 28-day study), Sprague Dawley rats were exposed to 0, 284, 1,135, and 4,540 ppm of 3-methylpentane for 6 hr/day, 5 days/week for 4 weeks via whole-body inhalation. Mortality, clinical signs, body weights, food consumption, hematology, serum chemistry, organ weights, and gross and histopathological findings were compared between control and all exposure groups. No mortality or remarkable clinical signs were observed during the study. No gross or histopathological lesions, or adverse effects on body weight, food consumption, hematology, serum chemistry, and organ weights were observed in any male or female rats in all exposure groups, although some statistically significant changes were observed in food consumption, serum chemistry, and organ weights. In conclusion, the results of this study indicate that no observable adverse effect level (NOAEL) for 3-methylpentane above 4,540 ppm/6 hr/day, 5 days/week for rats.

Subacute Inhalation Toxicity of Cyclohexanone in B6C3F1 Mice

  • Lee, Yong-Hoon;Chung, Yong Hyun;Kim, Hyeon-Yeong;Shin, Seo Ho;Lee, Sang Bae
    • Toxicological Research
    • /
    • v.34 no.1
    • /
    • pp.49-53
    • /
    • 2018
  • Cyclohexanone ($C_6H_{10}O$, CAS No. 108-94-1) is a colorless oily liquid obtained through the oxidation of cyclohexane or dehydrogenation of phenol. It is used in the manufacture of adhesives, sealant chemicals, agricultural chemicals, paint and coating additives, solvent, electrical and electronic products, paints and coatings, photographic supplies, film, photochemicals, and as an intermediate in nylon production. Owing to the lack of information on repeated inhalation toxicity of cyclohexaone, in this study, we aimed to characterize the subacute inhalation toxicity. B6C3F1 mice were exposed to 0, 50, 150, and 250 ppm of cyclohexanone for 6 hr/day, 5 days/week for 4 weeks via whole-body inhalation in accordance with the OECD Test Guideline 412 (subacute inhalation toxicity: 28-day study). Mortality, clinical signs, body weights, food consumption, hematology, serum biochemistry, organ weights, as well as gross and histopathological findings were evaluated between the control and exposure groups. No mortality or remarkable clinical signs were observed during the study. No adverse effects on body weight, food consumption, hematology, serum biochemistry, and organ weights, gross or histopathological lesions were observed in any male or female mice in any of the exposure groups, although some statistically significant changes were observed in organ weights. We concluded that no observable adverse effect level (NOAEL) is above 250 ppm in mice exposed to cyclohexanone for 6 hr/day for 5 days/week.

A Toxicity Evaluation for the Toxic Gases of Building Finish Materials (건축물 마감재료 연소가스에 의한 독성평가)

  • Cho, Nam-Wook;Cho, Dong-Ho;Oh, Eun-Ha
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.129-140
    • /
    • 2012
  • Smoke toxicity is the test for the toxicity evaluation of smoke and hazardous gas, caused by combustion of building materials and finishing materials. Smoke toxicity can be evaluated by the mean incapacitation time of mice. This test result can be influenced by the health status of mice and test condition. In acute inhalation toxicity test of hazardous gas, no typical clinical findings and histopathologic abnormalities were observed. Tracheitis and bronchitis as well as acute lung inflammation around terminal bronchiole in some mouse of the highest dose group. Through this study, we established the method for inhalation toxicity test of hazardous gas as well as the SOP of inhalation toxicity test. However, in the future studies, the concentration control methods for inhalation technologies on hazardous gas will be needed to improve continuously and also further studies on other gas inhalation toxicity will be needed to conduct.

Prioritization of Chemicals for Chronic/Carcinogenic Inhalation Testing (만성발암성 흡입독성시험 우선순위 물질 선정 연구)

  • Rim, Kyung-Taek;Lim, Cheol-Hong;Kim, Hyeon-Yeong;Cha, Shin-Woo;Heo, Yong;Yoon, Jin-Ha;Kim, Hyung-A
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.1
    • /
    • pp.23-41
    • /
    • 2017
  • Objectives: In this study, we seek to perform a priority selection for test substances for chronic inhalation toxicity studies, including acute and subchronic inhalation toxicity studies, which are to be performed after the construction of a chronic/carcinogenicity inhalation toxicity study facility and enactment of pertinent legislation. Methods: Through this study, qualitative and quantitative priority evaluation of test substances according to acute, subchronic and chronic categories were respectively performed and priorities were suggested by expert group review, redundancy and other methods. Meanwhile, a draft on test substance selection criteria, procedures and methods referring to the National Toxicology Program (NTP) system was proposed. Results: This study selected priorities for candidate substances for chronic inhalation toxicity studies to be conducted from 2016. Conclusions: In the future, by assessing in advance the toxicological effects of chemicals to which workers can be potentially exposed in the workplace via long-term inhalation, expected health disturbances among workers will be reduced and it is anticipated that occupational disease induced by chemicals will be effectively prevented.

Characteristics of flow field of nose-only exposure chamber for inhalation toxicity evaluation (흡입독성평가를 위한 비부노출 챔버의 유동흐름 특성)

  • Noh, Hakjae;Bong, Choonkeun;Bong, Hakyung;Kim, Yonggu;Cho, Myunghaing;Kim, Sanghwa;Kim, Daesung
    • Particle and aerosol research
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • In this work, we evaluated the characteristics of flow field and uniformity of the nose-only exposure chambers for the inhalation toxicity test. Computational fluid dynamics (CFD) modeling was carried out to demonstrate uniformity of the nose-only exposure chambers. Because it is very important in the inhalation toxicity experiments that test materials are distributed uniformly to each holder of the chamber. The test was done with these 3 types of chamber with different form to develop inhalation toxicity evaluation system, easy-to-operate system among exposure chamber used for evaluating inhalation toxicity of environmental chemical mixtures. Through CFD interpretation, nose-only exposure chamber was made with the selection of the optimal conditions. For its evaluation, one type of fragrance was selected and measured particle size distribution of each port. The gene becoming luminous to green fluorescence was combined with GPT-SPE, a type of tGFP vector, to be inhaled to the mouse. Based on this, luminous intensity was checked. As a result, total particle number concentration of each port had average value of $3.17{\times}10^6{\sharp}/cm^3$ and range of the highest and lowest concentration value was approximately ${\pm}4.8%$. Autopsy of lung tissues of mouse showed that it had clearly better delivery of gene compared to the control group.

A Study on the Hazardousness Evaluation and the Inhalation Toxicity of Methylcyclohexane (메틸사이클로핵산 (methylcyclohexane)의 흡입독성과 유해성 평가)

  • Kim Hyeon-Yeong;Lee Sung-Bae;Kang Min-Gu;Song Si-Hwan
    • Environmental Analysis Health and Toxicology
    • /
    • v.21 no.2 s.53
    • /
    • pp.173-184
    • /
    • 2006
  • From the harmfulness expectation test conducted through a toxicity anticipation program, methylcyclohexane turned out to be harmful and simulative, but no carcinogenicity was anticipated. In a four-hour acute inhalation toxicity test, the result showed that lethal concentration ($LC_{50}$) was 3,750 ppm (15,054 mg/L), which was identified as a harmful substance on the basis of the harmful substance classification standard $2 of the Industrial safety and health law. methylcyclohexane fell under the category $4(2,500 substance from the GHS standard acute toxicity harmfulness classification. Also, from subchronic inhalation toxicity test that included 6 hours a day, five days a week, and for 13 weeks, we could observe weight, activity, long term weight, blood and blood biochemical influence from the exposure of test substance. No-observed effect level (NOEL) was determined below $100{\sim}400ppm$ inboth male and female. This material falls under the Category 2 ($50{\sim}250ppm/6hours/90days$) in the GHS (Globally Harmonized System) standard trace long-term whole body toxicity repeated exposure, and can be classified as a harmful substance in accordance with the Industrial Safety and Health Law harmful substance standard $NOEL{\leq}0.5mg/L/6hr/90day$ (rat).

A Study on Subchronic Inhalation Toxicity of 1-Chloropropane

  • Chung, Yong Hyun;Han, Jeong Hee;Lee, Yong-Hoon
    • Toxicological Research
    • /
    • v.31 no.4
    • /
    • pp.393-402
    • /
    • 2015
  • This study was conducted to measure toxicity of 1-chloropropane (CAS No. : 540-54-5). According to the OECD Test Guideline 413 (Subchronic inhalation toxicity: 90-day study), SD rats were exposed to 0, 310, 1,250, and 5,000 ppm of 1-chloropropane for 6 h/day, 5 day/week for 13 weeks via whole-body inhalation. Mortality, clinical signs, body weights, food consumption, motor activity, ophthalmoscopy, hematology, serum chemistry, urinalysis, organ weights, gross and histopathological findings were compared between control and all tested groups. No mortality or remarkable clinical signs were examined during the study. No gross lesions or adverse effects on body weight, food consumption, motor activity, ophthalmoscopy, urinalysis, hematology, organ weights were observed in any of male or female rats in all tested groups. In serum biochemistry, glucose was significantly decreased in males of 1,250 and 5,000 ppm groups compared to control group in dose-dependent relationship. In histopathological examination, vacuolation of acinar cells was observed in pancreas of all male and female groups exposed to 1-chloropropane. In conclusion, no observable adverse effect level (NOAEL) was considered to be below 310 ppm/6 h/day, 5 day/week for rats.