• Title/Summary/Keyword: Infrastructure System Design

Search Result 708, Processing Time 0.028 seconds

Constructing Landscape as an Operational Multi-Environmental Control Utility and Green Infrastructure - Landscape Design for National Marine Biology Resource Institute - (작동하는 복합환경조절장치 및 녹색기반시설로서 조경 - 국립해양생물자원관 옥외공간 설계 -)

  • Sung, Jongsang
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.2
    • /
    • pp.41-56
    • /
    • 2012
  • Landscape space can and should play as a multi-functional agent : healing contaminated soil, reducing natural hazards, supporting living things, making comfortable environment for human, and appealing to human aesthetics, etc. This article aims to show the possibility and role of landscape space as such agent. In landscape design for National Marine Biology Resource Institute, distributed rain water treatment system and rain gardens are introduced to replace a mono-functioning large detention pond which was suggested by disaster impact assesment. Phytoremediation and vegetation filtering system with muti-cell wetlands are also adapted to heal the contaminated soil. This kind of landscape as a 'living machine' which can play as an operational control utility of multi-environment and thus can be combined effectively into green infrastructure is important for post-industrial city, especially in an era of climate change.

Design and Implementation of NSM based Security Management System in Smart Grid (스마트그리드 전력망의 NSM 기반 보안관리시스템 설계 및 구현)

  • Chang, Beom Hwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.3
    • /
    • pp.107-117
    • /
    • 2013
  • In this paper, we designed the security management system based on IEC 62351-7 in the Smart Grid environment. The scope of IEC 62351-7 focuses on network and system management (NSM) of the information infrastructure as well as end-to-end security through abstract NSM data objects for the power system operational environment. However, it does not exist that security management system based on IEC 62351-7 manages the security of the power system in the Smart Grid environment, because power equipment or SNMP agents providing NSM data do not exist yet. Therefore, we implemented the security management system to manage the information infrastructure as reliably as the power system infrastructure is managed. We expect that this system can perform the security management of IEC 61850 based digital substation and can be a prototype of the security system for the Smart Grid in the future.

A Study on the Improvement of Design for Safety(DfS) System (설계안전성검토(DfS) 제도의 개선방안 연구)

  • Lee, Solim;Cho, Sungwoo;Kim, Dongeon;Yu, Jiyoung;Lee, Eunmi
    • Journal of the Korea Institute of Construction Safety
    • /
    • v.2 no.2
    • /
    • pp.70-75
    • /
    • 2019
  • The purpose of this study is to conduct survey on the DfS system for employees who perform construction-related tasks, analyze the results, and present improvement directions. The results of the survey showed that the system was gradually being settled, with about 82% and 93% positive results on the recognition and necessity of the system. In addition, the three highest response rates for the improvement of the system were first, improving the expertise of DfS-related performance personnel, second, improving the awareness of DfS-related actors, and third, reflecting the appropriate costs associated with DfS. For the realization of the above improvements, it was proposed to prepare a curriculum for improving the professionalism of the staff, to implement an incentive system for improvement of perception, and to prepare appropriate payment criteria for preparing reports available during the construction phase. In addition, the Korea Infrastructure Safety and Technology Corporation will need to perform its active role in order to become a system for preemptive management of risk factors for construction accidents from the design stage.

The Building for Safety Regulation DB of Urban Transit System Infrastructure used by Computer Design Tool (전산지원도구를 이용한 도시철도시설 안전기준 DB구축 연구)

  • Lee, Woo-Dong;Shin, Jeong-Ryul;Ahn, Tai-Ki
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.786-790
    • /
    • 2006
  • Urban rail transit offers target performance and function because various lower part system such as rolling-stock, signal, power and trackis consisted as complex. In order to function properly an urban rail transit which is complicated system to work as safety and reliability, System must secure safety with structure, design, manufacture, install and verification and it is important to establish a safety standard follows it procedures, establish what step all it is important to operate. Safety standard of urban transit infrastructure is minimum standard necessary to secure safety of signal, power and track. Urban rail transit standard business leads to make many requirements. Recently, many types of equipment have applied to manage requirements and standards for system efficiently in part of universal, airline and car accordingly applied equipments use to manage a pursuit(Trace) between standard of system. Especially importance of management is emphasized more become more. Importance of standard management which usesa computing support tool recently in transit filed is embossed and is predicted to be more such forward. Therefore we propose the effective method of management with infrastructure system by constructed data-base system.

  • PDF

A Study on the Application of Cybersecurity by Design of Critical Infrastructure (주요기반시설의 사전예방적보안(Cybersecurity by Design) 적용 방안에 관한 연구)

  • YOO, Jiyeon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.674-681
    • /
    • 2021
  • Cyber attacks targeting critical infrastructure are on the rise. Critical infrastructure is defined as core infrastructures within a country with a high degree of interdependence between the different structures; therefore, it is difficult to sufficiently protect it using outdated cybersecurity techniques. In particular, the distinction between the physical and logical risks of critical infrastructure is becoming ambiguous; therefore, risk management from a comprehensive perspective must be implemented. Accordingly, as a means of further actively protecting critical infrastructure, major countries have begun to apply their security and cybersecurity systems by design, as a more expanded concept is now being considered. This proactive security approach (CSbD, Cybersecurity by Design) includes not only securing the stability of software (SW) safety design and management, but also physical politics and device (HW) safety, precautionary and blocking measures, and overall resilience. It involves a comprehensive security system. Therefore, this study compares and analyzes security by design measures towards critical infrastructure that are leading the way in the US, Europe, and Singapore. It reflects the results of an analysis of optimal cybersecurity solutions for critical infrastructure. I would like to present a plan for applying by Design.

Lightweight Design of a Modular Bridge for Railway Infrastructure Systems (철도 인프라 적용 교량형 조립식 모듈의 경량화 설계)

  • Im, Jae Moon;Shin, Kwang Bok;Park, Jae Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.471-478
    • /
    • 2016
  • This paper describes a method to design a lightweight modular bridge for a railway infrastructure system. A lightweight design was achieved using the material selection method. Aluminum extrusions and honeycomb sandwich composites were selected as the best materials to reduce the weight of the upper structure of a conventional modular bridge made of carbon-steel material. The structural integrity of the lightweight modular bridge was evaluated under vertical and wind loads. The twisting and bending natural frequencies were also evaluated to investigate its dynamic characteristics. The results showed that the structural integrity and natural frequencies of the lightweight modular bridge, made of aluminum extrusion and sandwich composites, satisfied the design requirements. Moreover, it was found that the weight of the conventional modular bridge made of carbon steel could be reduced by a maximum of 47% using lightweight materials.

Technical Advancements Needed for the Introduction of Distributed Water Infrastructure to Urban Wastewater Management Systems (분산형 물 인프라의 도시 하수관리 시스템 도입을 위한 기술적 발전방안)

  • Yongju Choi;Wooram Lee
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.1
    • /
    • pp.76-86
    • /
    • 2023
  • We are on the verge of paradigm shift for the design and operation of our urban water systems from treatment- and efficiency-based to recirculation- and sustainability-based. One of the most frequently suggested alternatives to embody this paradigm shift is to decentralize the currently highly centralized urban water infrastructure. However, claims for water infrastructure decentralization are often criticized due to poor economic feasibility, unstable performance, and unprofessional operation and maintenance. The current study critically reviews the literature to discuss the technical advancement needs to overcome such challenges. Firstly, decentralized water infrastructure was briefly defined and the rationale for the proposal of its introduction to the next-generation urban water systems was laid down. The main discussion focused on the following water technologies, which require special attention when working with decentralized water infrastructure: i) material collection, storage, and transport; ii) easily scalable water treatment; iii) sensor, information, and communications; and iv) system optimization. The principles, current development status, and challenges were discussed for each of the water technologies. The discussion on the water technologies has enabled the identification of future research needs for their application to the next-generation urban water systems which will be designed following decentralized water infrastructure. This paper will significantly improve the current understanding on water infrastructure decentralization and provides insight on future direction of water technology development.

Sensor enriched infrastructure system

  • Wang, Ming L.;Yim, Jinsuk
    • Smart Structures and Systems
    • /
    • v.6 no.3
    • /
    • pp.309-333
    • /
    • 2010
  • Civil infrastructure, in both its construction and maintenance, represents the largest societal investment in this country, outside of the health care industry. Despite being the lifeline of US commerce, civil infrastructure has scarcely benefited from the latest sensor technological advances. Our future should focus on harnessing these technologies to enhance the robustness, longevity and economic viability of this vast, societal investment, in light of inherent uncertainties and their exposure to service and even extreme loadings. One of the principal means of insuring the robustness and longevity of infrastructure is to strategically deploy smart sensors in them. Therefore, the objective is to develop novel, durable, smart sensors that are especially applicable to major infrastructure and the facilities to validate their reliability and long-term functionality. In some cases, this implies the development of new sensing elements themselves, while in other cases involves innovative packaging and use of existing sensor technologies. In either case, a parallel focus will be the integration and networking of these smart sensing elements for reliable data acquisition, transmission, and fusion, within a decision-making framework targeting efficient management and maintenance of infrastructure systems. In this paper, prudent and viable sensor and health monitoring technologies have been developed and used in several large structural systems. Discussion will also include several practical bridge health monitoring applications including their design, construction, and operation of the systems.

Autonomous, Scalable, and Resilient Overlay Infrastructure

  • Shami, Khaldoon;Magoni, Damien;Lorenz, Pascal
    • Journal of Communications and Networks
    • /
    • v.8 no.4
    • /
    • pp.378-390
    • /
    • 2006
  • Many distributed applications build overlays on top of the Internet. Several unsolved issues at the network layer can explain this trend to implement network services such as multicast, mobility, and security at the application layer. On one hand, overlays creating basic topologies are usually limited in flexibility and scalability. On the other hand, overlays creating complex topologies require some form of application level addressing, routing, and naming mechanisms. Our aim is to design an efficient and robust addressing, routing, and naming infrastructure for these complex overlays. Our only assumption is that they are deployed over the Internet topology. Applications that use our middleware will be relieved from managing their own overlay topologies. Our infrastructure is based on the separation of the naming and the addressing planes and provides a convergence plane for the current heterogeneous Internet environment. To implement this property, we have designed a scalable distributed k-resilient name to address binding system. This paper describes the design of our overlay infrastructure and presents performance results concerning its routing scalability, its path inflation efficiency and its resilience to network dynamics.

Environmental Rating System (ERS) for assessing Infrastructure Projects in the United Arab Emirates

  • Jayawickrama, Thilini;Dulaimi, Mohammed;Ofori, George
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.554-558
    • /
    • 2015
  • With the increasing movement towards sustainable construct on, environmental rating systems (ERSs) came into use in the Middle Eastern (ME) region as similar to many other regions. ERSs were first developed to assess buildings and many ERSs have tended related ERSs. Despite the vast infrastructure development in the ME region and in the United Arab Emirates in particular, there is no understand the regional-specific requirements to attain sustainable construction and infrastructure. Tis research addresses these pags and study the theoretical underpinnings of sustainable infrastructure in the region, to propose a regional-specific, infrastructure-related ERS. This paper examines the underpinning factors of sustainable infrastructure in the UAE through a literature review in order to provide insights to determine criteria and subcriteria for the ERS.

  • PDF