• Title/Summary/Keyword: Infrared(IR)

Search Result 1,559, Processing Time 0.024 seconds

Infrared Signature Analysis on a Flat Plate by Using the Spectral BRDF Data (파장별 BRDF 데이터를 이용한 평판의 적외선 복사휘도 특성 분석)

  • Choi, Jun-Hyuk;Kim, Dong-Geon;Kim, Jung-Ho;Kim, Tae-Kuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.6
    • /
    • pp.577-585
    • /
    • 2010
  • This paper is a part of developing a software that predicts the infrared signal emitted from a ground object by considering solar irradiation. The radiance emitted from a surface can be calculated by using the temperature and optical characteristics of the surface object. The bidirectional reflectance distribution function (BRDF) is defined as the ratio of reflected radiance to incident irradiance. It is a very important surface reflection property that decides the reflected radiance from the object. In this paper, the spectral radiance received by a remote sensor over the mid-wave infrared(MWIR), and the long-wave infrared(LWIR) regions are computed and compared each other for several different materials. The results show that the optical surface properties such as the BRDF and the emissivity of the object surface can play a major role in generating the infrared signatures of various objects, and the largest infrared signal may reach up to 10 times the smallest one when the infrared signals obtained from a flat plate with different surface conditions under the sun light.

NEAR-IR PHOTOMETRIC STUDY OF THE FU ORIONIS OBJECT HBC 722

  • Sung, Hyun-Il;Park, Won-Kee;Yang, Yuna;Lee, Sang-Gak;Yoon, Tae Seog;Lee, Jeong-Eun;Kang, Wonseok;Park, Keun-Hong;Cho, Dong-Hwan;Park, Sunkyung
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.6
    • /
    • pp.253-259
    • /
    • 2013
  • We present near-infrared light curves of HBC 722 after its the September 2010 outburst. We have been monitoring its near-infrared light curves since November 2010 with Korean Astronomy and Space Science Institute Infrared Camera System (KASINICS). HBC 722 exhibits large changes in optical and near-infrared brightness since its outburst. The J, H, and $K_s$ light curves over about 2.5 years show that in all observed bands HBC 722 progressively became fainter until around April 2011, down to J ~10.7, H ~9.9, $K_s$ ~9.3, but it is getting brighter again. Large scatter in the obtained light curve prevents us from finding whether there is any short timescale variation as reported in other optical observations. The near-infrared color of HBC 722 is becoming bluer since its outburst. The pre-outburst Spectral Energy Distribution (SED) of HBC 722 is consistent with that of a slightly reddened Class II YSO with the exception of the extraordinary IR-excess in the far-infrared region.

Research of human body information interfacing with Far infrared and application to physical therapy (Far infrared를 이용한 생체정보 인터페이싱에 대한 연구)

  • Park, Rae Joon;Kim, Jae-Yoon
    • The Journal of Korean Physical Therapy
    • /
    • v.13 no.3
    • /
    • pp.509-527
    • /
    • 2001
  • The Sun's ray is composed of Infrared(49%), Visible light(40%) and Ultra violet(11%), however the ray getting to the earth is FIR(Far infrared; 60%), IR(Infrared; 20%), and UV(Ultra Violet; 20%). Human beings has utilized FIR already from time immemorial. Hershel found out Infrared for the first time. in the Industrial Revolution the Infrared and FIR had been begun to use making products. In these days, with contemporary science FIR would be begun to clear up the implication in the human body and organic compound. IR classified by wavelength three parts NlR, MIR, FIR. There is FIR which is radiated from healthy human body the wave length is 8-l4m. The human body is composed of proteins which get easily changed by a thermal factor (about 42 $^{\circ}$C over). FIR with low temperature can deeply penetrate on the human body composed things without troublesomes, since FIR has effectively operated on the human body at low temperature (35-40 $^{\circ}$C). When FlR penetrated on the human body. it would inhibit the abnormal genes and cells expression, and then information of DNA and RNA would be reexpressed for arranging DNA and RNA abnormal state. As FlR's receptors in the body, it could be presumed that N-glycosyl linkage of purine and deoxyribose, RNA splicing process, and Heat shock protein. To take the FIR which was a optimized wavewlength and strength, at first, we induced the characteristic algorithm and the computerized programing. Then we formed that the formular of optimized FIR with physical, mathematical logic and theory. especially, Plank, Kirchhoff, Wien, Stefan-Boltzmann's logic and law. In the long run, the formular was induced with integration mathematical, since we had to know the molecular wavelength. Based on the induced formular as above, we programmed the optimized FlR radiating computerized program. In this research, we designed the eletronic circuit f3r interfacing with human body to diagnosis and treatment with FIR sensor which radiated FIR wavelength optimized.

  • PDF

Development and Validation of a Measurement Technique for Interfacial Velocity in Liquid-gas Separated Flow Using IR-PTV (적외선 입자추적유속계를 이용한 액체-기체 분리유동 시 계면속도 측정기법 개발 및 검증)

  • Kim, Sangeun;Kim, Hyungdae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.7
    • /
    • pp.549-555
    • /
    • 2015
  • A measurement technique of interfacial velocity in air-water separated flow by particle tracking velocimetry using an infrared camera (IR-PTV) was developed. As infrared light with wavelength in the range of 3-5 um could hardly penetrate water, IR-PTV can selectively visualize only the tracer particles existing in depths less than 20 um underneath the air-water interface. To validate the measurement accuracy of the IR-PTV technique, a measurement of the interfacial velocity of the air-water separated flow using Styrofoam particles floating in water was conducted. The interfacial velocity values obtained with the two different measurement techniques showed good agreement with errors less than 5%. It was found from the experimental results obtained using the developed technique that with increasing air velocity, the interfacial velocity proportionally increases, likely because of the increased interfacial stress.

Infrared Dual-field-of-view Optical System Design with Electro-Optic/Laser Common-aperture Optics

  • Jeong, Dohwan;Lee, Jun Ho;Jeong, Ho;Ok, Chang Min;Park, Hyun-Woo
    • Current Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.241-249
    • /
    • 2018
  • We report a midinfrared dual-field-of-view (FOV) optical system design for an airborne electro-optical targeting system. To achieve miniaturization and weight reduction of the system, it has a common aperture and fore-optics for three different spectral wavelength bands: an electro-optic (EO) band ($0.6{\sim}0.9{\mu}m$), a midinfrared (IR) band ($3.6{\sim}4.9{\mu}m$), and a designation laser wavelength ($1.064{\mu}m$). It is free to steer the line of sight by rotating the pitch and roll axes. Our design co-aligns the roll axis, and the line of sight therefore has a fixed entrance pupil position for all optical paths, unlike previously reported dual-FOV designs, which dispenses with image coregistration that is otherwise required. The fore-optics is essentially an achromatized, collimated beam reducer for all bands. Following the fore-optics, the bands are split into the dual-FOV IR path and the EO/laser path by a beam splitter. The subsequent dual-FOV IR path design consists of a zoom lens group and a relay lens group. The IR path with the fore-optics provides two stepwise FOVs ($1.50^{\circ}{\times}1.20^{\circ}$ to $5.40^{\circ}{\times}4.32^{\circ}$), due to the insertion of two Si lenses into the zoom lens group. The IR optical system is designed in such a way that the location and f-number (f/5.3) of the cold stop internally provided by the IR detector are maintained when changing the zoom. The design also satisfies several important performance requirements, including an on-axis modulation transfer function (MTF) that exceeds 10% at the Nyquist frequency of the IR detector pitch, with distortion of less than 2%.

Preparation and Characterization of Dinuclear and Trinuclear Metal Complexes, $[(PPh_3)_2(CO)M({\mu}-E)M(CO)(PPh_3)_2]X_2$ (M=Rh, Ir; E=Pyrazine, 4,4'-Bipyridyl, $X=SO_3CF_3$; $E=Pd(CN)_4$, $Pt(CN)_4$, X=none)

  • Ko Jaejung;Lee Myunggab;Kim Moonsik;Kang Sang Ook
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.2
    • /
    • pp.158-162
    • /
    • 1992
  • Hydrocarbon solution of $(PPh_3)_2(CO)MOSO_2CF_3(M=Rh$, Ir)reacts rapidly with Pyrazine or 4,4'-bipyridyl to yield dinuclear metal complexes $[(PPh_3)_3(CO)M({\mu}-pyrazine)M(CO)(PPh_3)_2](SO_3CF_3)_2$ (I: M= RhH; III: M=Ir) or [$(PPh_3)_2$(CO)M(${\mu}$-44'-bipyridyl)M(CO)$(PPh_3)_2](SO_3CF_3)_2$, (II: M=Rh; IV: M=Ir), respectively. Compounds, I, II, III, and IV were characterized by $^1H-NMR$, $^{13}C-NMR$, $^{31}P-NMR$, and infrared spectrum. Ethanol solution of $(PPh_3)_2(CO)MOSO_2CF_3$ (M=Rh, Ir) also reacts with $(TBA)_2$M'$(CN)_4$ (M'=Pd, Pt) to yield trinuclear metal complexes [$(PPh_3)_2$(CO)dM-NCM'$(CN)_2$CN-M(CO)$(PPh_3)_2]$ (V : M=Rh, M'=Pd; VI : M=Rh, M'=Pt; VII: M=Ir, M'=Pd; VIII: M=Ir, M'=Pt). The trinuclear metal complexes V, VI, VII, and VIII are bridged by the cyanide groups. The infrared spectrum of V, VI, VII, and VIII supports the presence of the bridged cyanide and terminal cyanide group.

Localization of Mobile Robot Using Multi IR Range Sensors (다중 IR 거리센서를 이용한 이동로봇의 자기위치 인식)

  • Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.744-748
    • /
    • 2007
  • In this paper, a new localization method of indoor mobile robot using multi IR(infrared) range sensors is proposed. Each IR range sensor detects the edge of obstacles and wall using the acquired range data. The environment map is built by the merging process of the detected edge data of each sensor. The performance of proposed system is verified by the comparison of the real environment and the detected map in experiments.

A DSP System for On-line Monitoring in Laser Welding Using a IR and UV Sensors (IR 및 UV센서를 이용한 레이저 용접시의 실시간 모니터링 DSP 시스템)

  • Yoon Choong-Sup
    • Journal of Welding and Joining
    • /
    • v.23 no.4
    • /
    • pp.53-58
    • /
    • 2005
  • We designed a weld monitoring system with UV and IR sensors using a embedded DSP controller for implementing a distribution system; running stand alone and communication with outside by industrial standard protocols. Also this system provided a USB port in order to be acquiring data in PC. The user interface program in PC visualized the IR and W data in time, frequency and state space. A correlation of IR and UV signals showed closely related to weld quality. A rapid change of geometry can be found through a moving average filter. And the average value of IR signal at an interval represented a welding width and depth. Through these results, we proposed a monitoring algorithm for a integer type DSP.

Real-Time Object Detection System Based on Background Modeling in Infrared Images (적외선영상에서 배경모델링 기반의 실시간 객체 탐지 시스템)

  • Park, Chang-Han;Lee, Jae-Ik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.4
    • /
    • pp.102-110
    • /
    • 2009
  • In this paper, we propose an object detection method for real-time in infrared (IR) images and PowerPC (PPC) and H/W design based on field programmable gate array (FPGA). An open H/W architecture has the advantages, such as easy transplantation of HW and S/W, support of compatibility and scalability for specification of current and previous versions, common module design using standardized design, and convenience of management and maintenance. Proposed background modeling for an open H/W architecture design decreases size of search area to construct a sparse block template of search area in IR images. We also apply to compensate for motion compensation when image moves in previous and current frames of IR sensor. Separation method of background and objects apply to adaptive values through time analysis of pixel intensity. Method of clutter reduction to appear near separated objects applies to median filter. Methods of background modeling, object detection, median filter, labeling, merge in the design embedded system execute in PFC processor. Based on experimental results, proposed method showed real-time object detection through global motion compensation and background modeling in the proposed embedded system.

Infrared Spectral Signatures of Dust by Ground-based FT-IR and Space-borne AIRS (지상 및 위성 고분해 적외스펙트럼 센서에서 관측된 황사 특성)

  • Lee, Byung-Il;Sohn, Eun-Ha;Ou, Mi-Lim;Kim, Yoon-Jae
    • Atmosphere
    • /
    • v.19 no.4
    • /
    • pp.319-329
    • /
    • 2009
  • The intensive dust observation experiment has been performed at Korea Global Atmosphere Watch Center (KGAW) in Anmyeon, Korea during each spring season from 2007 to 2009. Downward and upward hyper-spectral spectrums over the dust condition were measured to understand the hyper-spectral properties of Asian dust using both ground-based Fourier Transform Infrared Spectroscopy (FT-IR) and space-borne AIRS/Aqua. To understand the impact of the Asian dust, a Line-by-Line radiative transfer model runs to calculate the high resolution infrared spectrum over the wave number range of $500-500cm^{-1}$. Furthermore, the radiosonde, a $PM_{10}$ Sampler, a Micro Pulse Lidar (MPL), and an Aerodynamic Particle Sizer (APS) are used to understand the vertical profile of temperature and humidity and the properties of Asian dust like concentration, altitude of dust layer, and size distribution. In this study, we found the Asian dust distributed from surface up to 3-4 km and volume concentration is increased at the size range between 2 and $8{\mu}m$ The observed dust spectrums are larger than the calculated clear sky spectrums by 15~60K for downward and lower by around 2~6K for upward in the wave number range of $800-1200cm^{-1}$. For the characteristics of the spectrum during the Asian dust, the downward spectrum is revealed a positive slope for $800-1000cm^{-1}$ region and negative slope over $1100-1200cm^{-1}$ region. In the upward spectrum, slopes are opposed to the downward one. It is inferred that the difference between measured and calculated spectrum is mostly due to the contribution of emission and/or absorption of the dust particles by the aerosol amount, size distribution, altitude, and composition.