DOI QR코드

DOI QR Code

NEAR-IR PHOTOMETRIC STUDY OF THE FU ORIONIS OBJECT HBC 722

  • Sung, Hyun-Il (Korea Astronomy and Space Science Institute) ;
  • Park, Won-Kee (Korea Astronomy and Space Science Institute) ;
  • Yang, Yuna (Department of Physics and Astronomy, Seoul National University) ;
  • Lee, Sang-Gak (Department of Physics and Astronomy, Seoul National University) ;
  • Yoon, Tae Seog (Department of Astronomy and Atmospheric Sciences, Kyungpook National University) ;
  • Lee, Jeong-Eun (School of Space Research, Kyung Hee University) ;
  • Kang, Wonseok (National Youth Space Center) ;
  • Park, Keun-Hong (Department of Physics and Astronomy, Seoul National University) ;
  • Cho, Dong-Hwan (Department of Astronomy and Atmospheric Sciences, Kyungpook National University) ;
  • Park, Sunkyung (School of Space Research, Kyung Hee University)
  • Received : 2013.10.22
  • Accepted : 2013.11.29
  • Published : 2013.12.31

Abstract

We present near-infrared light curves of HBC 722 after its the September 2010 outburst. We have been monitoring its near-infrared light curves since November 2010 with Korean Astronomy and Space Science Institute Infrared Camera System (KASINICS). HBC 722 exhibits large changes in optical and near-infrared brightness since its outburst. The J, H, and $K_s$ light curves over about 2.5 years show that in all observed bands HBC 722 progressively became fainter until around April 2011, down to J ~10.7, H ~9.9, $K_s$ ~9.3, but it is getting brighter again. Large scatter in the obtained light curve prevents us from finding whether there is any short timescale variation as reported in other optical observations. The near-infrared color of HBC 722 is becoming bluer since its outburst. The pre-outburst Spectral Energy Distribution (SED) of HBC 722 is consistent with that of a slightly reddened Class II YSO with the exception of the extraordinary IR-excess in the far-infrared region.

Keywords

References

  1. Antoniucci, S., Lorenzetti, D., Nisini, B., & Giannini, T. 2013, Continuous Brightening of the Eruptive Variable V2493 Cyg (HBC 722), ATel, 4712, 1
  2. Bertin, E., & Arnouts, S. 1996, SExtractor: Software for Source Extraction, A&AS, 117, 393 https://doi.org/10.1051/aas:1996164
  3. Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, The Relationship Between Infrared, Optical, and Ultraviolet Extinction, ApJ, 345, 245 https://doi.org/10.1086/167900
  4. Covey, K. R., Hillenbrand, L. A., Miller, A. A., et al. 2011, PTF10nvg: An Outbursting Class I Protostar in the Pelican/North American Nebula, AJ, 141, 40 https://doi.org/10.1088/0004-6256/141/2/40
  5. Croswell, K., Hartmann, L., & Avrett, E. H. 1987, Mass Loss from FU Orionis Objects, ApJ, 312, 227 https://doi.org/10.1086/164865
  6. Cutri, R. M., et al. 2012, WISE All-Sky Data Release, VizieR On-Line Data Catalog, 2311, 0
  7. Green, J. D., Evans, N. J. II., Kospal, A., et al. 2011, Disentangling the Environment of the FU Orionis Candidate HBC 722 with Herschel, ApJL, 731, 25 https://doi.org/10.1088/0004-637X/731/1/25
  8. Green, J. D., Robertson, P., Baek, G., et al. 2013, An Analysis of the Environments of FU Orionis Objects with Herschel, ApJ, 764, 22 https://doi.org/10.1088/0004-637X/764/1/22
  9. Hartmann, L., & Kenyon, S. J. 1996, The FU Orionis Phenomenon, ARA&A, 34, 207 https://doi.org/10.1146/annurev.astro.34.1.207
  10. Herbig, G. H. 1966, On the Interpretation of FU Orionis, VA, 8, 109
  11. Herbig, G. H. 1977, Eruptive Phenomena in Early Stellar Evolution, ApJ, 217, 693 https://doi.org/10.1086/155615
  12. Ishihara, D., Onaka, T., Kataza, H., et al. 2010, The AKARI/IRC Mid-Infrared All-Sky Survey, A&A, 514, A1 https://doi.org/10.1051/0004-6361/200913811
  13. Kolotilov, E. A., & Petrov, P. P. 1983, Studies of the FU Orionis Stars. I - Is V1515 Cygni Starting to Fade?, PAZh, 9, 171
  14. Kolotilov, E. A., & Petrov, P. P. 1985, Studies of the FU Orionis Stars. III - Photometry of FU Orionis, 1978-1985, PAZh, 11, 846
  15. Koornneef, J. 1983, Near-Infrared Photometry. II - In- trinsic Colours and the Absolute Calibration from One to Five Micron, A&A, 128, 84
  16. Kospal, A., Abraham, P., Acosta-Pulido, J. A., et al. 2011, The Outburst and Nature of Two Young Eruptive Stars in the North America/Pelican Nebula Complex, A&A, 527, A133 https://doi.org/10.1051/0004-6361/201016160
  17. Lee, J.-E., Kang, W., Lee, S.-G., et al. 2011, High Res- olution Optical Spectra of HBC 722 After Outburst, JKAS, 44, 67
  18. Miller, A. A., Hillenbrand, L. A., Covey, K. R., et al. 2011, Evidence for an FU Orionis-Like Outburst from a Classical T Tauri Star, ApJ, 730, 80 https://doi.org/10.1088/0004-637X/730/2/80
  19. Moon, B., Jin, H., Yuk, I.-S., et al. 2008, KASINICS: Near Infrared Camera System for the BOAO 1.8m Telescope, PASJ, 60, 849 https://doi.org/10.1093/pasj/60.4.849
  20. Robitaille, T. P., Whitney, B. A., Indebetouw, R., Wood, K., & Denzmre, P. 2006, Interpreting Spec- tral Energy Distributions from Young Stellar Ob- jects. I. A Grid of 200,000 YSO Model SEDs, ApJS, 167, 256 https://doi.org/10.1086/508424
  21. Robitaille, T. P., Whitney, B. A., Indebetouw, R., & Wood, K. 2007, Interpreting Spectral Energy Dis- tributions from Young Stellar Objects. II. Fitting Observed SEDs Using a Large Grid of Precomputed Models, ApJS, 169, 328 https://doi.org/10.1086/512039
  22. Semkov, E. H., Peneva, S. P., Munari, U., Milani, A., & Valisa, P. 2010, The Large Amplitude Outburst of the Young Star HBC 722 in NGC 7000/IC 5070, a New FU Orionis Candidate, A&A, 523, L3 https://doi.org/10.1051/0004-6361/201015902
  23. Semkov, E., & Peneva, S. 2010, A Possible New FUor Star in NGC 7000, ATel, 2801, 1
  24. Semkov, E. H., Peneva, S. P., Munari, U., et al. 2012, Optical Photometric and Spectral Study of the New FU Orionis Object V2493 Cygni (HBC 722), A&A, 542, A43 https://doi.org/10.1051/0004-6361/201219140
  25. Straizys, V., Meistas, E., Vansevicius, V., & Goldberg, E. P. 1989, Interstellar Extinction in the Area of the North America and Pelican Nebulae Complex, A&A, 222, 82
  26. Weintraub, D. A., Sandell, G., & Duncan, W. D. 1991, Are FU Orionis Stars Younger than T Tauri Stars? Submillimeter Constraints on Circumstellar Disks, ApJ, 382, 270 https://doi.org/10.1086/170715
  27. Yamashita, T., Sato, S., Kaifu, N., & Hayashi, S. S. 1990, The Density Structure of the Protostellar Disk - A Power-Law Distribution of the Dust around GGD 27 IRS, ApJ, 365, 615 https://doi.org/10.1086/169515
  28. Zhu, Z., Espaillat, C., Hinkle, K., et al. 2009, The Dif- ferential Rotation of FU Ori, ApJL, 694, 64 https://doi.org/10.1088/0004-637X/694/1/L64

Cited by

  1. X-ray emission from an FU Orionis star in early outburst: HBC 722 vol.570, 2014, https://doi.org/10.1051/0004-6361/201424841
  2. HIGH RESOLUTION OPTICAL AND NIR SPECTRA OF HBC 722 vol.807, pp.1, 2015, https://doi.org/10.1088/0004-637X/807/1/84
  3. TESTING THE BINARY TRIGGER HYPOTHESIS IN FUors vol.830, pp.1, 2016, https://doi.org/10.3847/0004-637X/830/1/29
  4. COLOR VARIABILITY OF HBC 722 IN THE POST-OUTBURST PHASES vol.149, pp.2, 2015, https://doi.org/10.1088/0004-6256/149/2/73
  5. Multiwavelength study of the low-luminosity outbursting young star HBC 722 vol.596, 2016, https://doi.org/10.1051/0004-6361/201528061