• Title/Summary/Keyword: Informative gene selection

Search Result 15, Processing Time 0.021 seconds

Informative Gene Selection Method in Tumor Classification

  • Lee, Hyosoo;Park, Jong Hoon
    • Genomics & Informatics
    • /
    • v.2 no.1
    • /
    • pp.19-29
    • /
    • 2004
  • Gene expression profiles may offer more information than morphology and provide an alternative to morphology- based tumor classification systems. Informative gene selection is finding gene subsets that are able to discriminate between tumor types, and may have clear biological interpretation. Gene selection is a fundamental issue in gene expression based tumor classification. In this report, techniques for selecting informative genes are illustrated and supervised shaving introduced as a gene selection method in the place of a clustering algorithm. The supervised shaving method showed good performance in gene selection and classification, even though it is a clustering algorithm. Almost selected genes are related to leukemia disease. The expression profiles of 3051 genes were analyzed in 27 acute lymphoblastic leukemia and 11 myeloid leukemia samples. Through these examples, the supervised shaving method has been shown to produce biologically significant genes of more than $94\%$ accuracy of classification. In this report, SVM has also been shown to be a practicable method for gene expression-based classification.

Feature Selection via Embedded Learning Based on Tangent Space Alignment for Microarray Data

  • Ye, Xiucai;Sakurai, Tetsuya
    • Journal of Computing Science and Engineering
    • /
    • v.11 no.4
    • /
    • pp.121-129
    • /
    • 2017
  • Feature selection has been widely established as an efficient technique for microarray data analysis. Feature selection aims to search for the most important feature/gene subset of a given dataset according to its relevance to the current target. Unsupervised feature selection is considered to be challenging due to the lack of label information. In this paper, we propose a novel method for unsupervised feature selection, which incorporates embedded learning and $l_{2,1}-norm$ sparse regression into a framework to select genes in microarray data analysis. Local tangent space alignment is applied during embedded learning to preserve the local data structure. The $l_{2,1}-norm$ sparse regression acts as a constraint to aid in learning the gene weights correlatively, by which the proposed method optimizes for selecting the informative genes which better capture the interesting natural classes of samples. We provide an effective algorithm to solve the optimization problem in our method. Finally, to validate the efficacy of the proposed method, we evaluate the proposed method on real microarray gene expression datasets. The experimental results demonstrate that the proposed method obtains quite promising performance.

Rank-based Multiclass Gene Selection for Cancer Classification with Naive Bayes Classifiers based on Gene Expression Profiles (나이브 베이스 분류기를 이용한 유전발현 데이타기반 암 분류를 위한 순위기반 다중클래스 유전자 선택)

  • Hong, Jin-Hyuk;Cho, Sung-Bae
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.8
    • /
    • pp.372-377
    • /
    • 2008
  • Multiclass cancer classification has been actively investigated based on gene expression profiles, where it determines the type of cancer by analyzing the large amount of gene expression data collected by the DNA microarray technology. Since gene expression data include many genes not related to a target cancer, it is required to select informative genes in order to obtain highly accurate classification. Conventional rank-based gene selection methods often use ideal marker genes basically devised for binary classification, so it is difficult to directly apply them to multiclass classification. In this paper, we propose a novel method for multiclass gene selection, which does not use ideal marker genes but directly analyzes the distribution of gene expression. It measures the class-discriminability by discretizing gene expression levels into several regions and analyzing the frequency of training samples for each region, and then classifies samples by using the naive Bayes classifier. We have demonstrated the usefulness of the proposed method for various representative benchmark datasets of multiclass cancer classification.

Removing Non-informative Features by Robust Feature Wrapping Method for Microarray Gene Expression Data (유전자 알고리즘과 Feature Wrapping을 통한 마이크로어레이 데이타 중복 특징 소거법)

  • Lee, Jae-Sung;Kim, Dae-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.8
    • /
    • pp.463-478
    • /
    • 2008
  • Due to the high dimensional problem, typically machine learning algorithms have relied on feature selection techniques in order to perform effective classification in microarray gene expression datasets. However, the large number of features compared to the number of samples makes the task of feature selection computationally inprohibitive and prone to errors. One of traditional feature selection approach was feature filtering; measuring one gene per one step. Then feature filtering was an univariate approach that cannot validate multivariate correlations. In this paper, we proposed a function for measuring both class separability and correlations. With this approach, we solved the problem related to feature filtering approach.

Building a Classifier for Integrated Microarray Datasets through Two-Stage Approach (2 단계 접근법을 통한 통합 마이크로어레이 데이타의 분류기 생성)

  • Yoon, Young-Mi;Lee, Jong-Chan;Park, Sang-Hyun
    • Journal of KIISE:Databases
    • /
    • v.34 no.1
    • /
    • pp.46-58
    • /
    • 2007
  • Since microarray data acquire tens of thousands of gene expression values simultaneously, they could be very useful in identifying the phenotypes of diseases. However, the results of analyzing several microarray datasets which were independently carried out with the same biological objectives, could turn out to be different. One of the main reasons is attributable to the limited number of samples involved in one microarry experiment. In order to increase the classification accuracy, it is desirable to augment the sample size by integrating and maximizing the use of independently-conducted microarray datasets. In this paper, we propose a novel two-stage approach which firstly integrates individual microarray datasets to overcome the problem caused by limited number of samples, and identifies informative genes, secondly builds a classifier using only the informative genes. The classifier from large samples by integrating independent microarray datasets achieves high accuracy up to 24.19% increase as against other comparison methods, sensitivity, and specificity on independent test sample dataset.

The Method of Gene Selection for Machine Learning Classifiers In Career Classification (암 분류를 목적으로 하는 기계 학습 분류기를 위한 효과적인 유전자 선택 방법)

  • 박형근;이수정;이일병
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.205-207
    • /
    • 2004
  • 유전자 발현 분석 시스템에 있어서 microarray 기술의 발전은 유전 질환 진단의 정확성과 신뢰도를 향상시키는 데에 큰 기여를 하였다. 다양한 microarray기술을 통해 얻은 대량의 유전자 발현 정보는 기계 학습분류기를 이용한 암의 분류와 진단, 예측 분야에도 효과적으로 이용될 수 있다. 이 과정에서 종류에 따른 암의 정확한 분류를 위해서는 되도록 해당 암 클래스와의 직접적인 연관이 있는 유전자만을 선택하여 활용하는 것이 효과적이다. 본 논문에서는 이러한 정보력 있는 유전자(informative gene)를 효과적으로 선택 할 수 있는 유전자 선택 방법을 제시하고, 이를 이용하여 세 가지 벤치마크 암 데이터에 대하여 체계적인 실험을 하였다. 그 결과 향상된 분류 성능을 확인할 수 있었다.

  • PDF

An Intelligent System of Marker Gene Selection for Classification of Cancers using Microarray Data (마이크로어레이 데이터를 이용한 암 분류 표지 유전자 선별 시스템)

  • Park, Su-Young;Jung, Chai-Yeoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.10
    • /
    • pp.2365-2370
    • /
    • 2010
  • The method of cancer classification based on microarray could contribute to being accurate cancer classification by finding differently expressing gene pattern statistically according to a cancer type. Therefore, the process to select a closely related informative gene with a particular cancer classification to classify cancer using present microarray technology with effect is essential. In this paper, the system can detect marker genes to likely express the most differentially explaining the effects of cancer using ovarian cancer microarray data. And it compare and analyze a performance of classification of the proposed system with it of established microarray system using multi-perceptron neural network layer. Microarray data set including marker gene that are selected using ANOVA method represent the highest classification accuracy of 98.61%, which show that it improve classification performance than established microarray system.

Variable Selection in Normal Mixture Model Based Clustering under Heteroscedasticity (이분산 상황 하에서 정규혼합모형 기반 군집분석의 변수선택)

  • Kim, Seung-Gu
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.6
    • /
    • pp.1213-1224
    • /
    • 2011
  • In high dimensionality where the number of variables are excessively larger than observations, it is required to remove the noninformative variables to cluster observations. Most model-based approaches for variable selection have been considered under the assumption of homoscedasticity and their models are mainly estimated by a penalized likelihood method. In this paper, a different approach is proposed to remove the noninformative variables effectively and to cluster based on the modified normal mixture model simultaneously. The validity of the model was provided and an EM algorithm was derived to estimate the parameters. Simulation studies and an experiment using real microarray dataset showed the effectiveness of the proposed method.

Evaluation of the classification method using ancestry SNP markers for ethnic group

  • Lee, Hyo Jung;Hong, Sun Pyo;Lee, Soong Deok;Rhee, Hwan seok;Lee, Ji Hyun;Jeong, Su Jin;Lee, Jae Won
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • Various probabilistic methods have been proposed for using interpopulation allele frequency differences to infer the ethnic group of a DNA specimen. The selection of the statistical method is critical because the accuracy of the statistical classification results vary. For the ancestry classification, we proposed a new ancestry evaluation method that estimate the combined ethnicity index as well as compared its performance with various classical classification methods using two real data sets. We selected 13 SNPs that are useful for the inference of ethnic origin. These single nucleotide polymorphisms (SNPs) were analyzed by restriction fragment mass polymorphism assay and followed by classification among ethnic groups. We genotyped 400 individuals from four ethnic groups (100 African-American, 100 Caucasian, 100 Korean, and 100 Mexican-American) for 13 SNPs and allele frequencies that differed among the four ethnic groups. Additionally, we applied our new method to HapMap SNP genotypes for 1,011 samples from 4 populations (African, European, East Asian, and Central-South Asian). Our proposed method yielded the highest accuracy among statistical classification methods. Our ethnic group classification system based on the analysis of ancestry informative SNP markers can provide a useful statistical tool to identify ethnic groups.

The Implement of System on Microarry Classification Using Combination of Signigicant Gene Selection Method (정보력 있는 유전자 선택 방법 조합을 이용한 마이크로어레이 분류 시스템 구현)

  • Park, Su-Young;Jung, Chai-Yeoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.315-320
    • /
    • 2008
  • Nowadays, a lot of related data obtained from these research could be given a new present meaning to accomplish the original purpose of the whole research as a human genome project. In such a thread, construction of gene expression analysis system and a basis rank analysis system is being watched newly. Recently, being identified fact that particular sub-class of tumor be related with particular chromosome, microarray started to be used in diagnosis field by doing cancer classification and predication based on gene expression information. In this thesis, we used cDNA microarrays of 3840 genes obtained from neuronal differentiation experiment of cortical stem cells on white mouse with cancer, created system that can extract informative gene list through normalization separately and proposed combination method for selecting more significant genes. And possibility of proposed system and method is verified through experiment. That result is that PC-ED combination represent 98.74% accurate and 0.04% MSE, which show that it improve classification performance than case to experiment after generating gene list using single similarity scale.