• Title/Summary/Keyword: Information input algorithm

Search Result 2,444, Processing Time 0.027 seconds

Condition assessment of bridge pier using constrained minimum variance unbiased estimator

  • Tamuly, Pranjal;Chakraborty, Arunasis;Das, Sandip
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.4
    • /
    • pp.319-344
    • /
    • 2020
  • Inverse analysis of non-linear reinforced concrete bridge pier using recursive Gaussian filtering for in-situ condition assessment is the main theme of this work. For this purpose, minimum variance unbiased estimation using unscented sigma points is adopted here. The uniqueness of this inverse analysis lies in its approach for strain based updating of engineering demand parameters, where appropriate bound and constrained conditions are introduced to ensure numerical stability and convergence. In this analysis, seismic input is also identified, which is an added advantage for the structures having no dedicated sensors for earthquake measurement. First, the proposed strategy is tested with a simulated example whose hysteretic properties are obtained from the slow-cyclic test of a frame to investigate its efficiency and accuracy. Finally, the experimental test data of a full-scale bridge pier is used to study its in-situ condition in terms of Park & Ang damage index. Overall the study shows the ability of the augmented minimum variance unbiased estimation based recursive time-marching algorithm for non-linear system identification with the aim to estimate the engineering damage parameters that are the fundamental information necessary for any future decision making for retrofitting/rehabilitation.

Electronic Attack Signal Transmission System using Multiple Antennas (다중 안테나를 이용한 전자 공격 신호 전송 시스템)

  • Chang, Jaewon;Ryu, Jeong Ho;Park, Joo Rae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.41-49
    • /
    • 2021
  • In electronic warfare, beamforming using multiple antennas is applied for effective transmission of electronic attack signals. In order to perform an electronic attack against multiple threats using the same frequency resource, it is necessary to apply a multi-beam transmission algorithm that has been studied in wireless communication systems. For electronic attacks against multiple threats, this paper presents an MMSE(Minimum Mean-Squared Error) beam-forming technique based on the prior location information of threats and an optimization method for power allocation. In addition, the performance of the proposed method is evaluated and received signals of multiple threats are compared and analyzed.

Change points detection for nonstationary multivariate time series

  • Yeonjoo Park;Hyeongjun Im;Yaeji Lim
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.4
    • /
    • pp.369-388
    • /
    • 2023
  • In this paper, we develop the two-step procedure that detects and estimates the position of structural changes for multivariate nonstationary time series, either on mean parameters or second-order structures. We first investigate the presence of mean structural change by monitoring data through the aggregated cumulative sum (CUSUM) type statistic, a sequential procedure identifying the likely position of the change point on its trend. If no mean change point is detected, the proposed method proceeds to scan the second-order structural change by modeling the multivariate nonstationary time series with a multivariate locally stationary Wavelet process, allowing the time-localized auto-correlation and cross-dependence. Under this framework, the estimated dynamic spectral matrices derived from the local wavelet periodogram capture the time-evolving scale-specific auto- and cross-dependence features of data. We then monitor the change point from the lower-dimensional approximated space of the spectral matrices over time by applying the dynamic principal component analysis. Different from existing methods requiring prior information on the type of changes between mean and covariance structures as an input for the implementation, the proposed algorithm provides the output indicating the type of change and the estimated location of its occurrence. The performance of the proposed method is demonstrated in simulations and the analysis of two real finance datasets.

Density Change Adaptive Congestive Scene Recognition Network

  • Jun-Hee Kim;Dae-Seok Lee;Suk-Ho Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.147-153
    • /
    • 2023
  • In recent times, an absence of effective crowd management has led to numerous stampede incidents in crowded places. A crucial component for enhancing on-site crowd management effectiveness is the utilization of crowd counting technology. Current approaches to analyzing congested scenes have evolved beyond simple crowd counting, which outputs the number of people in the targeted image to a density map. This development aligns with the demands of real-life applications, as the same number of people can exhibit vastly different crowd distributions. Therefore, solely counting the number of crowds is no longer sufficient. CSRNet stands out as one representative method within this advanced category of approaches. In this paper, we propose a crowd counting network which is adaptive to the change in the density of people in the scene, addressing the performance degradation issue observed in the existing CSRNet(Congested Scene Recognition Network) when there are changes in density. To overcome the weakness of the CSRNet, we introduce a system that takes input from the image's information and adjusts the output of CSRNet based on the features extracted from the image. This aims to improve the algorithm's adaptability to changes in density, supplementing the shortcomings identified in the original CSRNet.

Design of a Recommendation System for Improving Deep Neural Network Performance

  • Juhyoung Sung;Kiwon Kwon;Byoungchul Song
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.49-56
    • /
    • 2024
  • There have been emerging many use-cases applying recommendation systems especially in online platform. Although the performance of recommendation systems is affected by a variety of factors, selecting appropriate features is difficult since most of recommendation systems have sparse data. Conventional matrix factorization (MF) method is a basic way to handle with problems in the recommendation systems. However, the MF based scheme cannot reflect non-linearity characteristics well. As deep learning technology has been attracted widely, a deep neural network (DNN) framework based collaborative filtering (CF) was introduced to complement the non-linearity issue. However, there is still a problem related to feature embedding for use as input to the DNN. In this paper, we propose an effective method using singular value decomposition (SVD) based feature embedding for improving the DNN performance of recommendation algorithms. We evaluate the performance of recommendation systems using MovieLens dataset and show the proposed scheme outperforms the existing methods. Moreover, we analyze the performance according to the number of latent features in the proposed algorithm. We expect that the proposed scheme can be applied to the generalized recommendation systems.

Automated Course of Action Evaluation for Military Decision-Making (지휘결심을 위한 자동 방책 평가)

  • Geewon Suh;Hyungkeun Yi;Minhyuk Kim;Byungjoo Kim;Moonhyun Lee;Jaewoo Baek;Changho Suh
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.437-445
    • /
    • 2024
  • In future complex and diverse battlefield situations, the existing command system faces the challenge of delayed human judgement of strategy and low objectivity. This paper proposes an artificial intelligence model that takes situation information and course of action simulation results as input and automatically assigns scores to various evaluation elements and a comprehensive score. This tool is expected to assist the commander in making decisions, reduce the time required for making judgments, and promote impartial decision-making.

Joint Demosaicking and Arbitrary-ratio Down Sampling Algorithm for Color Filter Array Image (컬러 필터 어레이 영상에 대한 공동의 컬러보간과 임의 배율 다운샘플링 알고리즘)

  • Lee, Min Seok;Kang, Moon Gi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.68-74
    • /
    • 2017
  • This paper presents a joint demosaicking and arbitrary-ratio down sampling algorithm for color filter array (CFA) images. Color demosaiking is a necessary part of image signal processing pipeline for many types of digital image recording system using single sensor. Also, such as smart phone, obtained high resolution image from image sensor has to be down-sampled to be displayed on the screen. The conventional solution is "Demosaicking first and down sampling later". However, this scheme requires a significant amount of memory and computational cost. Also, artifacts can be introduced or details get damaged during demosaicking and down sampling process. In this paper, we propose a method in which demosaicking and down sampling are working simultaneously. We use inverse mapping of Bayer CFA and then joint demosaicking and down sampling with arbitrary-ratio scheme based on signal decomposition of high and low frequency component in input data. Experimental results show that our proposed algorithm has better image quality performance and much less computational cost than those of conventional solution.

Development on Prediction Algorithm of Sediment Discharge by Debris Flow for Decision of Location and Scale of the Check Dam (사방댐 위치 및 규모 결정을 위한 토석류 토사유출량 예측 알고리즘 개발)

  • Kim, Kidae;Woo, Choongshik;Lee, Changwoo;Seo, Junpyo;Kang, Minjeng
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.3
    • /
    • pp.586-593
    • /
    • 2020
  • Purpose: This study aims to develop an algorithm for predicting sediment discharge by debris flow, and develop GIS-based decision support system for optimal arrangement of check dam. Method: The average stream width and flow length were used to predict the cumulative sediment discharge by debris flow. At this time, the amount of slope failure on source area and average flow length were utilized as input factors. Result: The predicted sediment discharge calculated through the algorithm was 1.1 times different on average compared to the actual sediment discharge by debris flow. In addition, the program is an objective indicator that selects the location and size of the check dam, and it can help practitioners make rational decisions. Conclusion: The soil erosion control works are being implemented every year. Therefore, it is expected that the GIS-based decision support system for location and size of the check dam will contribute to the prevention of sediment-related disasters.

Human Gesture Recognition Technology Based on User Experience for Multimedia Contents Control (멀티미디어 콘텐츠 제어를 위한 사용자 경험 기반 동작 인식 기술)

  • Kim, Yun-Sik;Park, Sang-Yun;Ok, Soo-Yol;Lee, Suk-Hwan;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.10
    • /
    • pp.1196-1204
    • /
    • 2012
  • In this paper, a series of algorithms are proposed for controlling different kinds of multimedia contents and realizing interact between human and computer by using single input device. Human gesture recognition based on NUI is presented firstly in my paper. Since the image information we get it from camera is not sensitive for further processing, we transform it to YCbCr color space, and then morphological processing algorithm is used to delete unuseful noise. Boundary Energy and depth information is extracted for hand detection. After we receive the image of hand detection, PCA algorithm is used to recognize hand posture, difference image and moment method are used to detect hand centroid and extract trajectory of hand movement. 8 direction codes are defined for quantifying gesture trajectory, so the symbol value will be affirmed. Furthermore, HMM algorithm is used for hand gesture recognition based on the symbol value. According to series of methods we presented, we can control multimedia contents by using human gesture recognition. Through large numbers of experiments, the algorithms we presented have satisfying performance, hand detection rate is up to 94.25%, gesture recognition rate exceed 92.6%, hand posture recognition rate can achieve 85.86%, and face detection rate is up to 89.58%. According to these experiment results, we can control many kinds of multimedia contents on computer effectively, such as video player, MP3, e-book and so on.

A New Face Detection Method using Combined Features of Color and Edge under the illumination Variance (컬러와 에지정보를 결합한 조명변화에 강인한 얼굴영역 검출방법)

  • 지은미;윤호섭;이상호
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.11
    • /
    • pp.809-817
    • /
    • 2002
  • This paper describes a new face detection method that is a pre-processing algorithm for on-line face recognition. To complement the weakness of using only edge or rotor features from previous face detection method, we propose the two types of face detection method. The one is a combined method with edge and color features and the other is a center area color sampling method. To prevent connecting the people's face area and the background area, which have same colors, we propose a new adaptive edge detection algorithm firstly. The adaptive edge detection algorithm is robust to illumination variance so that it extracts lots of edges and breakouts edges steadily in border between background and face areas. Because of strong edge detection, face area appears one or multi regions. We can merge these isolated regions using color information and get the final face area as a MBR (Minimum Bounding Rectangle) form. If the size of final face area is under or upper threshold, color sampling method in center area from input image is used to detect new face area. To evaluate the proposed method, we have experimented with 2,100 face images. A high face detection rate of 96.3% has been obtained.