• Title/Summary/Keyword: Information input algorithm

Search Result 2,444, Processing Time 0.035 seconds

Overview of Image-based Object Recognition AI technology for Autonomous Vehicles (자율주행 차량 영상 기반 객체 인식 인공지능 기술 현황)

  • Lim, Huhnkuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1117-1123
    • /
    • 2021
  • Object recognition is to identify the location and class of a specific object by analyzing the given image when a specific image is input. One of the fields in which object recognition technology is actively applied in recent years is autonomous vehicles, and this paper describes the trend of image-based object recognition artificial intelligence technology in autonomous vehicles. The image-based object detection algorithm has recently been narrowed down to two methods (a single-step detection method and a two-step detection method), and we will analyze and organize them around this. The advantages and disadvantages of the two detection methods are analyzed and presented, and the YOLO/SSD algorithm belonging to the single-step detection method and the R-CNN/Faster R-CNN algorithm belonging to the two-step detection method are analyzed and described. This will allow the algorithms suitable for each object recognition application required for autonomous driving to be selectively selected and R&D.

S&P Noise Removal Filter Algorithm using Plane Equations (평면 방정식을 이용한 S&P 잡음제거 필터 알고리즘)

  • Young-Su, Chung;Nam-Ho, Kim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.27 no.1
    • /
    • pp.47-53
    • /
    • 2023
  • Devices such as X-Ray, CT, MRI, scanners, etc. can generate S&P noise from several sources during the image acquisition process. Since S&P noise appearing in the image degrades the image quality, it is essential to use noise reduction technology in the image processing process. Various methods have already been proposed in research on S&P noise removal, but all of them have a problem of generating residual noise in an environment with high noise density. Therefore, this paper proposes a filtering algorithm based on a three-dimensional plane equation by setting the grayscale value of the image as a new axis. The proposed algorithm subdivides the local mask to design the three closest non-noisy pixels as effective pixels, and applies cosine similarity to a region with a plurality of pixels. In addition, even when the input pixel cannot form a plane, it is classified as an exception pixel to achieve excellent restoration without residual noise.

Development of the algorithms for establishing the relative positional relations between node-pipe-valve of water pipe networks (상수도 관망의 노드-파이프-밸브 사이의 상대적 위치 관계를 수립하기 위한 알고리즘의 개발)

  • Park, Suwan;Jeon, Ye Jun;Kim, Kyeong Cheol;Lee, Hyun Dong
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1187-1195
    • /
    • 2022
  • To run the algorithm for identifying the segments of a pipe network, the relative positional relation between nodes, pipes, and valves should be prepared as input information of a segment search algorithm. In order to more accurately identify the segments of real pipe network, pipe network GIS/CAD database that contains all isolation valves is more suitable than modeled pipe network information used for a hydraulic analysis program. In this study, we developed an algorithm that can establish the relative positional relations among node-pipe-valve suitable for pipe network segment search algorithms using GIS/CAD data of a real water supply network, and developed a MATLAB program that can implement it. The effectiveness of the developed MATLAB program was confirmed by applying it to a portion of a real municipal pipe network.

Automatic Indexing Algorithm of Golf Video Using Audio Information (오디오 정보를 이용한 골프 동영상 자동 색인 알고리즘)

  • Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.5
    • /
    • pp.441-446
    • /
    • 2009
  • This paper proposes an automatic indexing algorithm of golf video using audio information. In the proposed algorithm, the input audio stream is demultiplexed into the stream of video and audio. By means of Adaboost-cascade classifier, the continuous audio stream is classified into announcer's speech segment recorded in studio, music segment accompanied with players' names on TV screen, reaction segment of audience according to the play, reporter's speech segment with field background, filed noise segment like wind or waves. And golf swing sound including drive shot, iron shot, and putting shot is detected by the method of impulse onset detection and modulation spectrum verification. The detected swing and applause are used effectively to index action or highlight unit. Compared with video based semantic analysis, main advantage of the proposed system is its small computation requirement so that it facilitates to apply the technology to embedded consumer electronic devices for fast browsing.

The Design of Single Phase PFC using a DSP (DSP를 이용한 단상 PFC의 설계)

  • Yang, Oh
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.6
    • /
    • pp.57-65
    • /
    • 2007
  • This paper presents the design of single phase PFC(Power Factor Correction) using a DSP(TMS320F2812). In order to realize the proposed boost PFC converter in average current mode control, the DSP requires the A/D sampling values for a line input voltage, a inductor current, and the output voltage of the converter. Because of a FET switching noise, these sampling values contain a high frequency noise and switching ripple. The solution of A/D sampling keeps away from the switching point. Because the PWM duty is changed from 5% to 95%, we can#t decide a fixed sampling time. In this paper, the three A/D converters of the DSP are started using the prediction algorithm for the FET ON/OFF time at every sampling cycle(40 KHz). Implemented A/D sampling algorithm with only one timer of the DSP is very simple and gives the autostart of these A/D converters. From the experimental result, it was shown that the power factor was about 0.99 at wide input voltage, and the output ripple voltage was smaller than 5 Vpp at 80 Vdc output. Finally the parameters and gains of PI controllers are controlled by serial communication with Windows Xp based PC. Also it was shown that the implemented PFC converter can achieve the feasibility and the usefulness.

Improved Binarization and Removal of Noises for Effective Extraction of Characters in Color Images (컬러 영상에서 효율적 문자 추출을 위한 개선된 2치화 및 잡음 저거)

  • 이은주;정장호
    • Journal of Information Technology Application
    • /
    • v.3 no.2
    • /
    • pp.133-147
    • /
    • 2001
  • This paper proposed a new algorithm for binarization and removal of noises in color images with characters and pictures. Binarization was performed by threshold which had computed with color-relationship relative to the number of pixel in background and character candidates and pre-threshold for dividing of background and character candidates in input images. The pre-threshold has been computed by the histogram of R, G, B In respect of the images, while background and character candidates of input images are divided by the above pre-threshold. As it is possible that threshold can be dynamically decided by the quantity of the noises, and the character images are maintained and the noises are removed to the maximum. And, in this study, we made the noise pattern table as a result of analysis in noise pattern included in the various color images aiming at removal of the noises from the Images. Noises included in the images can figure out Distribution by way of the noise pattern table and pattern matching itself. And then this Distribution classified difficulty of noises included in the images into the three categories. As removal of noises in the images is processed through different procedure according to the its classified difficulties, time required for process was reduced and efficiency of noise removal was improved. As a result of recognition experiments in respect of extracted characters in color images by way of the proposed algorithm, we conformed that the proposed algorithm is useful in a sense that it obtained the recognition rate in general documents without colors and pictures to the same level.

  • PDF

Image Compression Using DCT Map FSVQ and Single - side Distribution Huffman Tree (DCT 맵 FSVQ와 단방향 분포 허프만 트리를 이용한 영상 압축)

  • Cho, Seong-Hwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.10
    • /
    • pp.2615-2628
    • /
    • 1997
  • In this paper, a new codebook design algorithm is proposed. It uses a DCT map based on two-dimensional discrete cosine of transform (2D DCT) and finite state vector quantizer (FSVQ) when the vector quantizer is designed for image transmission. We make the map by dividing input image according to edge quantity, then by the map, the significant features of training image are extracted by using the 2D DCT. A master codebook of FSVQ is generated by partitioning the training set using binary tree based on tree-structure. The state codebook is constructed from the master codebook, and then the index of input image is searched at not master codebook but state codebook. And, because the coding of index is important part for high speed digital transmission, it converts fixed length codes to variable length codes in terms of entropy coding rule. The huffman coding assigns transmission codes to codes of codebook. This paper proposes single-side growing huffman tree to speed up huffman code generation process of huffman tree. Compared with the pairwise nearest neighbor (PNN) and classified VQ (CVQ) algorithm, about Einstein and Bridge image, the new algorithm shows better picture quality with 2.04 dB and 2.48 dB differences as to PNN, 1.75 dB and 0.99 dB differences as to CVQ respectively.

  • PDF

Efficient Construction of Euclidean Minimum Spanning Tree Using Partial Polynomial-Time Approximation Scheme in Unequality Node Distribution (비 균등 노드 분포환경에서 부분 PTAS를 이용한 효과적인 유클리드 최소신장트리 생성)

  • Kim, In-Bum;Kim, Soo-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.6
    • /
    • pp.71-80
    • /
    • 2014
  • Employing PTAS to building minimum spanning tree for a large number of equal distribution input terminal nodes can be a effective way in execution time. But applying PTAS to building minimum spanning tree for tremendous unequal distribution node may lead to performance degradation. In this paper, a partial PTAS reflecting the scheme into specific node dense area is presented. In the environment where 90% of 50,000 input terminal nodes stand close together in specific area, approximate minimum spanning tree by our proposed scheme can show about 88.49% execution time less and 0.86%tree length less than by existing PTAS, and about 87.57%execution time less and 1.18% tree length more than by Prim's naive scheme. Therefore our scheme can go well to many useful applications where a multitude of nodes gathered around specific area should be connected efficiently as soon as possible.

Modified Adaptive Random Testing through Iterative Partitioning (반복 분할 기반의 적응적 랜덤 테스팅 향상 기법)

  • Lee, Kwang-Kyu;Shin, Seung-Hun;Park, Seung-Kyu
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.5
    • /
    • pp.180-191
    • /
    • 2008
  • An Adaptive Random Testing (ART) is one of test case generation algorithms that are designed to detect common failure patterns within input domain. The ART algorithm shows better performance than that of pure Random Testing (RT). Distance-bases ART (D-ART) and Restriction Random Testing (RRT) are well known examples of ART algorithms which are reported to have good performances. But significant drawbacks are observed as quadratic runtime and non-uniform distribution of test case. They are mainly caused by a huge amount of distance computations to generate test case which are distance based method. ART through Iterative Partitioning (IP-ART) significantly reduces the amount of computation of D-ART and RRT with iterative partitioning of input domain. However, non-uniform distribution of test case still exists, which play a role of obstacle to develop a scalable algerian. In this paper we propose a new ART method which mitigates the drawback of IP-ART while achieving improved fault-detection capability. Simulation results show that the proposed one has about 9 percent of improved F-measures with respect to other algorithms.

Simulation and Colorization between Gray-scale Images and Satellite SAR Images Using GAN (GAN을 이용한 흑백영상과 위성 SAR 영상간의 모의 및 컬러화)

  • Jo, Su Min;Heo, Jun Hyuk;Eo, Yang Dam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.125-132
    • /
    • 2024
  • Optical satellite images are being used for national security and collection of information, and their utilization is increasing. However, it acquires low-quality images that are not suitable for the user's requirement due to weather conditions and time constraints. In this paper, a deep learning-based conversion of image and colorization model referring to high-resolution SAR images was created to simulate the occluded area with clouds of optical satellite images. The model was experimented according to the type of algorithm applied and input data, and each simulated images was compared and analyzed. In particular, the amount of pixel value information between the input black-and-white image and the SAR image was similarly constructed to overcome the problem caused by the relatively lack of color information. As a result of the experiment, the histogram distribution of the simulated image learned with the Gray-scale image and the high-resolution SAR image was relatively similar to the original image. In addition, the RMSE value was about 6.9827 and the PSNR value was about 31.3960 calculated for quantitative analysis.