• Title/Summary/Keyword: Information based Industry

Search Result 5,130, Processing Time 0.037 seconds

Understanding the Relationship between Value Co-Creation Mechanism and Firm's Performance based on the Service-Dominant Logic (서비스지배논리하에서 가치공동창출 매커니즘과 기업성과간의 관계에 대한 연구)

  • Nam, Ki-Chan;Kim, Yong-Jin;Yim, Myung-Seong;Lee, Nam-Hee;Jo, Ah-Rha
    • Asia pacific journal of information systems
    • /
    • v.19 no.4
    • /
    • pp.177-200
    • /
    • 2009
  • AIn the advanced - economy, the services industry hasbecome a dominant sector. Evidently, the services sector has grown at a much faster rate than any other. For instance, in such developed countries as the U.S., the proportion of the services sector in its GDP is greater than 75%. Even in the developing countries including India and China, the magnitude of the services sector in their GDPs is rapidly growing. The increasing dependence on service gives rise to new initiatives including service science and service-dominant logic. These new initiatives propose a new theoretical prism to promote the better understanding of the changing economic structure. From the new perspectives, service is no longer regarded as a transaction or exchange, but rather co-creation of value through the interaction among service users, providers, and other stakeholders including partners, external environments, and customer communities. The purpose of this study is the following. First, we review previous literature on service, service innovation, and service systems and integrate the studies based on service dominant logic. Second, we categorize the ten propositions of service dominant logic into conceptual propositions and the ones that are directly related to service provision. Conceptual propositions are left out to form the research model. With the selected propositions, we define the research constructs for this study. Third, we develop measurement items for the new service concepts including service provider network, customer network, value co-creation, and convergence of service with product. We then propose a research model to explain the relationship among the factors that affect the value creation mechanism. Finally, we empirically investigate the effects of the factors on firm performance. Through the process of this research study, we want to show the value creation mechanism of service systems in which various participants in service provision interact with related parties in a joint effort to create values. To test the proposed hypotheses, we developed measurement items and distributed survey questionnaires to domestic companies. 500 survey questionnaires were distributed and 180 were returned among which 171 were usable. The results of the empirical test can be summarized as the following. First, service providers' network which is to help offer required services to customers is found to affect customer network, while it does not have a significant effect on value co-creation and product-service convergence. Second, customer network, on the other hand, appears to influence both value co-creation and product-service convergence. Third, value co-creation accomplished through the collaboration of service providers and customers is found to have a significant effect on both product-service convergence and firm performance. Finally, product-service convergence appears to affect firm performance. To interpret the results from the value creation mechanism perspective, service provider network well established to support customer network is found to have significant effect on customer network which in turn facilitates value co-creation in service provision and product-service convergence to lead to greater firm performance. The results have some enlightening implications for practitioners. If companies want to transform themselves into service-centered business enterprises, they have to consider the four factors suggested in this study: service provider network, customer network, value co-creation, and product-service convergence. That is, companies becoming a service-oriented organization need to understand what the four factors are and how the factors interact with one another in their business context. They then may want to devise a better tool to analyze the value creation mechanism and apply the four factors to their own environment. This research study contributes to the literature in following ways. First, this study is one of the very first empirical studies on the service dominant logic as it has categorized the fundamental propositions into conceptual and empirically testable ones and tested the proposed hypotheses against the data collected through the survey method. Most of the propositions are found to work as Vargo and Lusch have suggested. Second, by providing a testable set of relationships among the research variables, this study may provide policy makers and decision makers with some theoretical grounds for their decision making on what to do with service innovation and management. Finally, this study incorporates the concepts of value co-creation through the interaction between customers and service providers into the proposed research model and empirically tests the validity of the concepts. The results of this study will help establish a value creation mechanism in the service-based economy, which can be used to develop and implement new service provision.

A Study on the Level of Citizen Participation in Smart City Project (스마트도시사업 단계별 시민참여 수준 진단에 관한 연구)

  • PARK, Ji-Ho;PARK, Joung-Woo;NAM, Kwang-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.2
    • /
    • pp.12-28
    • /
    • 2021
  • Based on the global smart city promotion trend, in 2018, the "Fourth Industrial Revolution Committee" selected "sustainability" and "people-centered" as keywords in relation to the direction of domestic smart city policy. Accordingly, the Living Lab program, which is an active citizen-centered innovation methodology, is applied to each stage of the domestic smart city construction project. Through the Living Lab program, and in collaboration with the public and experts, the smart city discovers local issues as it focuses on citizens, devises solutions to sustainable urban problems, and formulates a regional development plan that reflects the needs of citizens. However, compared to citizen participation in urban regeneration projects that have been operated for a relatively long time, participation in smart city projects was found to significantly differ in level and sustainability. Therefore, this study conducted a comparative analysis of the characteristics of citizen participation at each stage of an urban regeneration project and, based on Arnstein's "Participation Ladder" model, examined the level of citizen participation activities in the Living Lab program carried out in a smart city commercial area from 2018 to 2019. The results indicated that citizen participation activities in the Living Lab conducted in the smart city project had a great influence on selecting smart city services, which fit the needs of local residents, and on determining the technological level of services appropriate to the region based on a relatively high level of authority, such as selection of smart city services or composition of solutions. However, most of the citizen participation activities were halted after the project's completion due to the one-off recruitment of citizen participation groups for the smart city construction project only. On the other hand, citizens' participation activities in the field of urban regeneration were focused on local communities, and continuous operation and management measures were being drawn from the project planning stage to the operation stage after the project was completed. This study presented a plan to revitalize citizen participation for the realization of a more sustainable smart city through a comparison of the characteristics and an examination of the level of citizen participation in such urban regeneration and smart city projects.

Analysis of Tourism Popularity Using T-map Search andSome Trend Data: Focusing on Chuncheon-city, Gangwon-province (T맵 검색지와 썸트랜드 데이터를 이용한 관광인기도분석: 강원도 춘천을 중심으로)

  • TaeWoo Kim;JaeHee Cho
    • Journal of Service Research and Studies
    • /
    • v.12 no.1
    • /
    • pp.25-35
    • /
    • 2022
  • Covid-19, of which the first patient in Korea occurred in January 2020, has affected various fields. Of these, the tourism sector might havebeen hit the hardest. In particular, since tourism-based industrial structure forms the basis of the region, Gangwon-province, and the tourism industry is the main source of income for small businesses and small enterprises, the damage is great. To check the situation and extent of such damage, targeting the Chuncheon region, where public access is the most convenient among the Gangwon regions, one-day tours are possible using public transportation from Seoul and the metropolitan area, with a general image that low expense tourism is recognized as possible, this study conducted empirical analysis through data analysis. For this, the general status of the region was checked based on the visitor data of Chuncheon city provided by the tourist information system, and to check the levels ofinterest in 2019, before Covid-19, and in 2020, after Covid-19, by comparing keywords collected from the web service sometrend of Vibe Company Inc., a company specializing in keyword collection, with SK Telecom's T-map search site data, which in parallel provides in-vehicle navigation service and communication service, this study analyzed the general regional image of Chuncheon-city. In addition, by comparing data from two years by developing a tourism popularity index applying keywords and T-map search site data, this study examined how much the Covid-19 situation affected the level of interest of visitors to the Chuncheon area leading to actual visits using a data analysis approach. According to the results of big data analysis applying the tourism popularity index after designing the data mart, this study confirmed that the effect of the Covid-19 situation on tourism popularity in Chuncheon-city, Gangwon-provincewas not significant, and confirmed the image of tourist destinations based on the regional characteristics of the region. It is hoped that the results of this research and analysis can be used as useful reference data for tourism economic policy making.

A Study on the Effect of the Third-Party Award Winning Advertisement on Consumer's Pre-Purchase Intention (제 3 기관 수상(Award Winning) 광고가 소비자 구매의도에 미치는 영향에 관한 연구 - 마케팅 변수들의 조절 효과를 중심으로 -)

  • Jeon, Hoseong
    • Asia Marketing Journal
    • /
    • v.10 no.1
    • /
    • pp.25-64
    • /
    • 2008
  • Third-Party awards are growing in popularity. They are the hit product of the year chosen by The Korea Economic Daily, the best 10 products of the year chosen by Sports paper, the best hit product chosen by consulting firm and the best venture company of the year chosen by Information and Communication Ministry. Then these questions may be followed. Why industry likes this type of advertisement? Does this type of advertisement influences consumers' purchase intention? And if it does, how? Many researchers have been interested in external cue of product quality by focusing research effort on brand, price, producer, warranty etc. However, important but under-explored area is the role of third-party reference for signaling product quality. This paper comes from the idea that the third-party reference may signal consumers like manufacturer brand, product brand, product price, and shop brand. We develop a related theories to address research questions and drive some research hypotheses based on the previous studies probing source credibility, attribution, and signal theory. We put more emphasis on source credibility. We conducted the research based on 3x2x2x2 between group factorial design to explore causal relationship between the third party award winning advertising(real, fictional, no) and the purchase intention of consumers exposed to other information simultaneously such as product type(experience, search), distribution channel(direct, indirect) and perceived price(high, low). Since subjects are divided into 2 groups based on the means of response without extra experimental stimulus in case of perceived price. 12 different advertisements are used for conducting this study. The results are followings. First, the source credibility of the third party goes up, consumers' purchase intention would go up. It seems that consumers think the credibility of the third-party most when they are exposed to the third party award winning advertisement. Second, the product type does moderate the relationship between the third-party award winning advertisement and purchase intention. And the type of the distribution channel also moderates this relationship. The consumers' purchase intention goes up higher when they buy experience good and there is significant difference of purchase intention when consumers are exposed to direct channel treatment condition. But, perceived price has nothing to do with the third-party winning advertisement context for raising consumer intention to buy advertised product.

  • PDF

Factors Affecting Intention to Introduce Smart Factory in SMEs - Including Government Assistance Expectancy and Task Technology Fit - (중소기업의 스마트팩토리 도입의도에 영향을 미치는 요인에 관한 연구 - 정부지원기대와 과업기술적합도를 포함하여)

  • Kim, Joung-rae
    • Journal of Venture Innovation
    • /
    • v.3 no.2
    • /
    • pp.41-76
    • /
    • 2020
  • This study confirmed factors affecting smart factory technology acceptance through empirical analysis. It is a study on what factors have an important influence on the introduction of the smart factory, which is the core field of the 4th industry. I believe that there is academic and practical significance in the context of insufficient research on technology acceptance in the field of smart factories. This research was conducted based on the Unified Theory of Acceptance and Use of Technology (UTAUT), whose explanatory power has been proven in the study of the acceptance factors of information technology. In addition to the four independent variables of the UTAUT : Performance Expectancy, Effort Expectancy, Social Influence, and Facilitating Conditions, Government Assistance Expectancy, which is expected to be an important factor due to the characteristics of the smart factory, was added to the independent variable. And, in order to confirm the technical factors of smart factory technology acceptance, the Task Technology Fit(TTF) was added to empirically analyze the effect on Behavioral Intention. Trust is added as a parameter because the degree of trust in new technologies is expected to have a very important effect on the acceptance of technologies. Finally, empirical verification was conducted by adding Innovation Resistance to a research variable that plays a role as a moderator, based on previous studies that innovation by new information technology can inevitably cause refusal to users. For empirical analysis, an online questionnaire of random sampling method was conducted for incumbents of domestic small and medium-sized enterprises, and 309 copies of effective responses were used for empirical analysis. Amos 23.0 and Process macro 3.4 were used for statistical analysis. For accurate statistical analysis, the validity of Research Model and Measurement Variable were secured through confirmatory factor analysis. Accurate empirical analysis was conducted through appropriate statistical procedures and correct interpretation for causality verification, mediating effect verification, and moderating effect verification. Performance Expectancy, Social Influence, Government Assistance Expectancy, and Task Technology Fit had a positive (+) effect on smart factory technology acceptance. The magnitude of influence was found in the order of Government Assistance Expectancy(β=.487) > Task Technology Fit(β=.218) > Performance Expectancy(β=.205) > Social Influence(β=.204). Both the Task Characteristics and the Technology Characteristics were confirmed to have a positive (+) effect on Task Technology Fit. It was found that Task Characteristics(β=.559) had a greater effect on Task Technology Fit than Technology Characteristics(β=.328). In the mediating effect verification on Trust, a statistically significant mediating role of Trust was not identified between each of the six independent variables and the intention to introduce a smart factory. Through the verification of the moderating effect of Innovation Resistance, it was found that Innovation Resistance plays a positive (+) moderating role between Government Assistance Expectancy, and technology acceptance intention. In other words, the greater the Innovation Resistance, the greater the influence of the Government Assistance Expectancy on the intention to adopt the smart factory than the case where there is less Innovation Resistance. Based on this, academic and practical implications were presented.

The Effects of the Level of Use of LIS by Functions and the Linkage of Logistics Activities on the Logistics Performance (통합물류정보시스템의 활용이 물류성과에 미치는 영향에 관한 연구)

  • Shim, Kyu-Yeol;Lee, Hyun-Ki;Kim, Woo-Hyun
    • Journal of Global Scholars of Marketing Science
    • /
    • v.8
    • /
    • pp.375-402
    • /
    • 2001
  • While the national economy has rapidly grown, both insufficience in indirect capital facilities of society and attempt to avoid having a logistical job as one of the so-called dirty, difficult and dangerous jobs have resulted in the leak of labor in the logistical industry. First of all, it was shown that the functional utilization level of the logistical information system had a partial effect on the logistical performance, that the reduction of logistical costs was influenced by the information system of connecting and supporting functions, and that the improvement of customer service was significantly influenced by only the supporting-function system. Second, the logistical performance was partially influenced by the linkage between logistical activities, only the customer linkage had a significant effect on the reduction of logistical costs, and the improvement of customer service was influenced by the intra-company linkage. Third, in verifying a hypothesis that the logistical information system's functional utilization level and organizational structure would interact with each other and have an effect on the logistical performance, it was shown that based on their mutual interaction at a normalized level this center's functional information system had a significant effect on the reduction of logistical costs. Fourth, in testing a hypothesis that both the linkage between logistical activities and logistical organization structure would interact with each other and would have an effect on the logistical performance, it was shown that their interaction at a normalized level was significant concerning only the reduction of logistical costs, while there was I10 its significance in the customer service. In proving a hypothesis that the linkage between logistical activities and logistical strategy patterns would interact with each other and would have an effect on the logistical performance, it was shown in a differentiated, aggressive investment one among variously patterned logistical strategies that the customer linkage had a significant effect on the reduction of logistical costs, and in the improvement of customer service that the supplier linkage had a remarkable impact. It also was shown that in case of the cost reduction and offensive control strategy, the customer linkage had a remarkable effect, and th at in the improvement of customer service the intra-company and customer linkage had a significant effect. In the marketing and customer service strategy, finally, there was no any significant influence while the customer linkage had a significant impact in the improvement of customer service. Accordingly, whether or not individual companies utilize the logistical information system's functional utilization levels well will have an effect on their logistical performance, and how their supply chain management is well-linked will affect their logistical performance.

  • PDF

A study on security independent behavior in social game using expanded health belief model (건강신념모델을 확장한 소셜게임(Social Game) 보안의지행동에 관한 연구)

  • Ahn, Ho-Jeong;Kim, Sung-Jun;Kwon, Do-Soon
    • Management & Information Systems Review
    • /
    • v.35 no.2
    • /
    • pp.99-118
    • /
    • 2016
  • With the development of Internet and popularization of smartphones over recent years, social network services are experiencing rapid growth. On top of this, smartphone gaming market is showing a rapid growth and the use of mobile social games is on the significant rise. The occurrence of game data manipulation targeting these services and personal information leakage is highlighting the importance of social gaming security. This study is intended to propose development plans effective and efficient in social game services by figuring out factors putting effects on security dependent behavior of social game users in Korea and carrying out a practical study on the casual relationship between factors influencing security dependent behavior through recognized behavioral control and attitudes for privacy infringement of these factors. To do this, proposed was a study model in which the HBM(Health Belief Model) allowing the social game user to influence security dependent behavior was expanded and applied as a major variable. To verify the study model of this study practically, a survey was conducted among university students in Seoul-based K University and S University who had experienced using social game services. According to the study findings, firstly, the perceived seriousness turned out to provide positive influence to trust. But, the perceived seriousness turned out not to put positive effects on self-efficacy. Secondly, the perceived probability turned out not to put positive effects on self-efficacy and trust. Thirdly, the perceived gain turned out to put positive effects on self-efficacy and trust. Fourthly, the perceived disorder turned out not to put positive effects on self-efficacy and trust. Fifthly, self-efficacy turned out to put positive effects on trust. But, self-efficacy turned out not to put positive effects on security dependent behavior. Sixthly, trust turned out not to put positive effects on security dependent behavior. This study is intended to make a strategic proposal so that social game users can raise awareness of their level of security perception and security willingness through this.

  • PDF

A Study on the Revitalization of Tourism Industry through Big Data Analysis (한국관광 실태조사 빅 데이터 분석을 통한 관광산업 활성화 방안 연구)

  • Lee, Jungmi;Liu, Meina;Lim, Gyoo Gun
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.149-169
    • /
    • 2018
  • Korea is currently accumulating a large amount of data in public institutions based on the public data open policy and the "Government 3.0". Especially, a lot of data is accumulated in the tourism field. However, the academic discussions utilizing the tourism data are still limited. Moreover, the openness of the data of restaurants, hotels, and online tourism information, and how to use SNS Big Data in tourism are still limited. Therefore, utilization through tourism big data analysis is still low. In this paper, we tried to analyze influencing factors on foreign tourists' satisfaction in Korea through numerical data using data mining technique and R programming technique. In this study, we tried to find ways to revitalize the tourism industry by analyzing about 36,000 big data of the "Survey on the actual situation of foreign tourists from 2013 to 2015" surveyed by the Korea Culture & Tourism Research Institute. To do this, we analyzed the factors that have high influence on the 'Satisfaction', 'Revisit intention', and 'Recommendation' variables of foreign tourists. Furthermore, we analyzed the practical influences of the variables that are mentioned above. As a procedure of this study, we first integrated survey data of foreign tourists conducted by Korea Culture & Tourism Research Institute, which is stored in the tourist information system from 2013 to 2015, and eliminate unnecessary variables that are inconsistent with the research purpose among the integrated data. Some variables were modified to improve the accuracy of the analysis. And we analyzed the factors affecting the dependent variables by using data-mining methods: decision tree(C5.0, CART, CHAID, QUEST), artificial neural network, and logistic regression analysis of SPSS IBM Modeler 16.0. The seven variables that have the greatest effect on each dependent variable were derived. As a result of data analysis, it was found that seven major variables influencing 'overall satisfaction' were sightseeing spot attraction, food satisfaction, accommodation satisfaction, traffic satisfaction, guide service satisfaction, number of visiting places, and country. Variables that had a great influence appeared food satisfaction and sightseeing spot attraction. The seven variables that had the greatest influence on 'revisit intention' were the country, travel motivation, activity, food satisfaction, best activity, guide service satisfaction and sightseeing spot attraction. The most influential variables were food satisfaction and travel motivation for Korean style. Lastly, the seven variables that have the greatest influence on the 'recommendation intention' were the country, sightseeing spot attraction, number of visiting places, food satisfaction, activity, tour guide service satisfaction and cost. And then the variables that had the greatest influence were the country, sightseeing spot attraction, and food satisfaction. In addition, in order to grasp the influence of each independent variables more deeply, we used R programming to identify the influence of independent variables. As a result, it was found that the food satisfaction and sightseeing spot attraction were higher than other variables in overall satisfaction and had a greater effect than other influential variables. Revisit intention had a higher ${\beta}$ value in the travel motive as the purpose of Korean Wave than other variables. It will be necessary to have a policy that will lead to a substantial revisit of tourists by enhancing tourist attractions for the purpose of Korean Wave. Lastly, the recommendation had the same result of satisfaction as the sightseeing spot attraction and food satisfaction have higher ${\beta}$ value than other variables. From this analysis, we found that 'food satisfaction' and 'sightseeing spot attraction' variables were the common factors to influence three dependent variables that are mentioned above('Overall satisfaction', 'Revisit intention' and 'Recommendation'), and that those factors affected the satisfaction of travel in Korea significantly. The purpose of this study is to examine how to activate foreign tourists in Korea through big data analysis. It is expected to be used as basic data for analyzing tourism data and establishing effective tourism policy. It is expected to be used as a material to establish an activation plan that can contribute to tourism development in Korea in the future.

Deriving adoption strategies of deep learning open source framework through case studies (딥러닝 오픈소스 프레임워크의 사례연구를 통한 도입 전략 도출)

  • Choi, Eunjoo;Lee, Junyeong;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.27-65
    • /
    • 2020
  • Many companies on information and communication technology make public their own developed AI technology, for example, Google's TensorFlow, Facebook's PyTorch, Microsoft's CNTK. By releasing deep learning open source software to the public, the relationship with the developer community and the artificial intelligence (AI) ecosystem can be strengthened, and users can perform experiment, implementation and improvement of it. Accordingly, the field of machine learning is growing rapidly, and developers are using and reproducing various learning algorithms in each field. Although various analysis of open source software has been made, there is a lack of studies to help develop or use deep learning open source software in the industry. This study thus attempts to derive a strategy for adopting the framework through case studies of a deep learning open source framework. Based on the technology-organization-environment (TOE) framework and literature review related to the adoption of open source software, we employed the case study framework that includes technological factors as perceived relative advantage, perceived compatibility, perceived complexity, and perceived trialability, organizational factors as management support and knowledge & expertise, and environmental factors as availability of technology skills and services, and platform long term viability. We conducted a case study analysis of three companies' adoption cases (two cases of success and one case of failure) and revealed that seven out of eight TOE factors and several factors regarding company, team and resource are significant for the adoption of deep learning open source framework. By organizing the case study analysis results, we provided five important success factors for adopting deep learning framework: the knowledge and expertise of developers in the team, hardware (GPU) environment, data enterprise cooperation system, deep learning framework platform, deep learning framework work tool service. In order for an organization to successfully adopt a deep learning open source framework, at the stage of using the framework, first, the hardware (GPU) environment for AI R&D group must support the knowledge and expertise of the developers in the team. Second, it is necessary to support the use of deep learning frameworks by research developers through collecting and managing data inside and outside the company with a data enterprise cooperation system. Third, deep learning research expertise must be supplemented through cooperation with researchers from academic institutions such as universities and research institutes. Satisfying three procedures in the stage of using the deep learning framework, companies will increase the number of deep learning research developers, the ability to use the deep learning framework, and the support of GPU resource. In the proliferation stage of the deep learning framework, fourth, a company makes the deep learning framework platform that improves the research efficiency and effectiveness of the developers, for example, the optimization of the hardware (GPU) environment automatically. Fifth, the deep learning framework tool service team complements the developers' expertise through sharing the information of the external deep learning open source framework community to the in-house community and activating developer retraining and seminars. To implement the identified five success factors, a step-by-step enterprise procedure for adoption of the deep learning framework was proposed: defining the project problem, confirming whether the deep learning methodology is the right method, confirming whether the deep learning framework is the right tool, using the deep learning framework by the enterprise, spreading the framework of the enterprise. The first three steps (i.e. defining the project problem, confirming whether the deep learning methodology is the right method, and confirming whether the deep learning framework is the right tool) are pre-considerations to adopt a deep learning open source framework. After the three pre-considerations steps are clear, next two steps (i.e. using the deep learning framework by the enterprise and spreading the framework of the enterprise) can be processed. In the fourth step, the knowledge and expertise of developers in the team are important in addition to hardware (GPU) environment and data enterprise cooperation system. In final step, five important factors are realized for a successful adoption of the deep learning open source framework. This study provides strategic implications for companies adopting or using deep learning framework according to the needs of each industry and business.

Empirical Analysis of Accelerator Investment Determinants Based on Business Model Innovation Framework (비즈니스 모델 혁신 프레임워크 기반의 액셀러레이터 투자결정요인 실증 분석)

  • Jung, Mun-Su;Kim, Eun-Hee
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.1
    • /
    • pp.253-270
    • /
    • 2023
  • Research on investment determinants of accelerators, which are attracting attention by greatly improving the survival rate of startups by providing professional incubation and investment to startups at the same time, is gradually expanding. However, previous studies do not have a theoretical basis in developing investment determinants in the early stages, and they use factors of angel investors or venture capital, which are similar investors, and are still in the stage of analyzing importance and priority through empirical research. Therefore, this study verified for the first time in Korea the discrimination and effectiveness of investment determinants using accelerator investment determinants developed based on the business model innovation framework in previous studies. To this end, we first set the criteria for success and failure of startup investment based on scale-up theory and conducted a survey of 22 investment experts from 14 accelerators in Korea, and secured valid data on a total of 97 startups, including 52 successful scale-up startups and 45 failed scale-up startups, were obtained and an independent sample t-test was conducted to verify the mean difference between these two groups by accelerator investment determinants. As a result of the analysis, it was confirmed that the investment determinants of accelerators based on business model innovation framework have considerable discrimination in finding successful startups and making investment decisions. In addition, as a result of analyzing manufacturing-related startups and service-related startups considering the characteristics of innovation by industry, manufacturing-related startups differed in business model, strategy, and dynamic capability factors, while service-related startups differed in dynamic capabilities. This study has great academic implications in that it verified the practical effectiveness of accelerator investment determinants derived based on business model innovation framework for the first time in Korea, and it has high practical value in that it can make effective investments by providing theoretical grounds and detailed information for investment decisions.

  • PDF