• Title/Summary/Keyword: Information based Industry

Search Result 5,132, Processing Time 0.039 seconds

A study on the effect of accounting information on dividend policy by measuring corporate conservatism (From the perspective of the internal accounting management system) (기업보수주의 측정으로 회계정보가 배당정책에 미치는 연구 (내부회계 관리제도 관점에서))

  • Lee, Soon Mi;You, Yen Yoo
    • Journal of Digital Convergence
    • /
    • v.19 no.8
    • /
    • pp.141-149
    • /
    • 2021
  • This study investigated the effect of accounting information on dividend policy as a measure of corporate conservatism from the perspective of the internal accounting management system. The verification is based on a sample of 543 companies listed on securities (excluding KOSDAQ and financial industry) among the Bank of Korea (2019) 「2018 Corporate Management Analysis」 and company analysis of the Korea Productivity Center (financial data disclosed as listed companies as a December settlement company) was composed. Using SPSS 22, empirical analysis was conducted using exploratory factor analysis and regression analysis. The first is the verification related to corporate conservatism and the role of dividend policy, and it is verification of whether internal accounting management influences financial decision-making. Second, if internal accounting management exists, it is a verification of how conservatism and investment policies (in-house reserve, debt borrowing, capital increase, dividends, etc.) affect the corporate value according to accounting information. As a result, from the perspective of the internal accounting management system, it was found that among the variables of accounting information, profitability can have a positive effect on corporate conservatism and dividend policy as a corporate valuation method of reinvestment. In addition, it has been proven that corporate conservatism has an effect on profitability-to-value through capital accumulation and reinvestment such as surplus and internal reserves. In the future, we will study and discuss the complementarity of corporate conservatism and dividend policy in relation to governance structure and improvement of the internal accounting management system.

Analysis of Creative Personality and Intrinsic Motivation of Information Gifted Students Applying Curriculum Based on Computing Thinking (컴퓨팅사고력을 고려한 교육과정을 적용한 정보영재들의 창의적 성격과 내적동기 분석)

  • Chung, Jong-In
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.139-148
    • /
    • 2019
  • Fostering science-gifted individuals are very important for the future of the nation, and it is especially important to cultivate information-gifted individuals in the age of the fourth industry. There is no standardized curriculum for each gifted education center of the University. Therefore, in this study, we analyzed how effective the curriculum developed on the basis of computing thinking is to affect the characteristics of the information-gifted individuals. The curriculum developed on the components of computing thinking was applied to the information-gifted students of K University. In order to verify the effectiveness of the curriculum, we developed a creative personality test and an intrinsic motivation test, and conducted tests before and after the training. We compared pre-post test results by t-test with R program. The creative personality test consisted of 36 items with 6 factors: risk-taking, self - acceptance, curiosity, humor, dominance, and autonomy. The intrinsic motivation test consisted of 20 items with 5 items: curiosity and interest oriented tendency, challenging learning task preference orientation, independent judgment dependency propensity, independent mastery propensity, and internal criterion propensity. The effect of the curriculum on the creative personality of the experimental group was significant (0.009, 0.05). The significance level of the intrinsic motivation was 0.056 and was not significant at the 0.05 level of significance.

Comparative Analysis of News Big Data related to SARS-CoV, MERS-CoV, and SARS-CoV-2 (COVID-19)

  • Woo, Jae-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.8
    • /
    • pp.91-101
    • /
    • 2021
  • This paper intends to draw implications for preparing for Post-Corona in the health field and policy fields as the global pandemic is experienced due to COVID-19. The purpose of this study is to analyze the news and trends of media companies through temporal analysis of the three infectious diseases, SARS-CoV, MERS-CoV, and SARS-CoV-2 (COVID-19), in which the domestic infectious disease preventive system was active throughout the first year of the outbreak. To this end, by using the news analysis program of the Korea Press Foundation 'Big Kinds', the number of news articles per year was digitized based on the period when each infectious disease had an impact on Korea, and major trends were implemented and analyzed in a word cloud. As a result of the analysis, the number of articles related to infectious diseases peaked when the World Health Organization (WHO) declared a warning and (suspicious) confirmed cases occurred. According to keyword and word cloud analysis, 'infectious disease outbreak and major epidemic areas', 'prevention authorities', and 'disease information and confirmed patient information' were found to be the main common features, and differences were derived from the three infectious diseases. In addition, the current status of the infodemic was identified by performing word cloud analysis on information in uncertainty. The results of this study are significant in that they were able to derive the roles of the health authorities and the media that should be preceded in the event of a new disease epidemic through previously experienced infectious diseases, and areas to be rearranged.

A Development of Welding Information Management and Defect Inspection Platform based on Artificial Intelligent for Shipbuilding and Maritime Industry (인공지능 기반 조선해양 용접 품질 정보 관리 및 결함 검사 플랫폼 개발)

  • Hwang, Hun-Gyu;Kim, Bae-Sung;Woo, Yun-Tae;Yoon, Young-Wook;Shin, Sung-chul;Oh, Sang-jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.193-201
    • /
    • 2021
  • The welding has a high proportion of the production and drying of ships or offshore plants. Non-destructive testing is carried out to verify the quality of welds in Korea, radiography test (RT) is mainly used. Currently, most shipyards adopt analog-type techniques to print the films through the shoot of welding parts. Therefore, the time required from radiography test to pass or fail judgment is long and complex, and is being manually carried out by qualified inspectors. To improve this problem, this paper covers a platform for scanning and digitalizing RT films occurring in shipyards with high resolution, accumulating them in management servers, and applying artificial intelligence (AI) technology to detect welding defects. To do this, we describe the process of designing and developing RT film scanning equipment, welding inspection information integrated management platform, fault reading algorithms, visualization software, and testing and verification of each developed element in conjunction.

Analysis of Digital Twin Technology Trends Related to Geoscience and Mineral Resources after the Korean New Deal Policy in 2020 (2020년 한국판 뉴딜 정책 이후 지질자원 분야 디지털 트윈 기술개발 동향 분석)

  • Ahn, Eun-Young
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.659-670
    • /
    • 2021
  • In this study, we analyzed changes in policies after the Korean New Deal Policy in 2020, metaverse and 6th generation communication technology. In the research and development of geoscience and mineral resources, we emphasized on the connection between smart cities and digital twins by focusing on the linkage of the real world and geo-information. Further, we examined trends in developing digital twins after the Korean New Deal Policy in 2020 that focused on three-dimensional visualization technology, the first stage in implementing digital twins, and real-time monitoring technology of underground information, the second implementing stage. As results of this study, we emphasized on the efforts to provide accurate underground information based on geology, groundwater and geo-environment and to analyze and predict near-real-time levels of available underground information to the industry, local governments and the central governments. Research and development that integrate the fields of geology, environment, and information is required to lead national digital twin policies and smart city policies owing to the acceleration of the digital economy in Korea and globally during the post-Corona era.

Adaptive RFID anti-collision scheme using collision information and m-bit identification (충돌 정보와 m-bit인식을 이용한 적응형 RFID 충돌 방지 기법)

  • Lee, Je-Yul;Shin, Jongmin;Yang, Dongmin
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.1-10
    • /
    • 2013
  • RFID(Radio Frequency Identification) system is non-contact identification technology. A basic RFID system consists of a reader, and a set of tags. RFID tags can be divided into active and passive tags. Active tags with power source allows their own operation execution and passive tags are small and low-cost. So passive tags are more suitable for distribution industry than active tags. A reader processes the information receiving from tags. RFID system achieves a fast identification of multiple tags using radio frequency. RFID systems has been applied into a variety of fields such as distribution, logistics, transportation, inventory management, access control, finance and etc. To encourage the introduction of RFID systems, several problems (price, size, power consumption, security) should be resolved. In this paper, we proposed an algorithm to significantly alleviate the collision problem caused by simultaneous responses of multiple tags. In the RFID systems, in anti-collision schemes, there are three methods: probabilistic, deterministic, and hybrid. In this paper, we introduce ALOHA-based protocol as a probabilistic method, and Tree-based protocol as a deterministic one. In Aloha-based protocols, time is divided into multiple slots. Tags randomly select their own IDs and transmit it. But Aloha-based protocol cannot guarantee that all tags are identified because they are probabilistic methods. In contrast, Tree-based protocols guarantee that a reader identifies all tags within the transmission range of the reader. In Tree-based protocols, a reader sends a query, and tags respond it with their own IDs. When a reader sends a query and two or more tags respond, a collision occurs. Then the reader makes and sends a new query. Frequent collisions make the identification performance degrade. Therefore, to identify tags quickly, it is necessary to reduce collisions efficiently. Each RFID tag has an ID of 96bit EPC(Electronic Product Code). The tags in a company or manufacturer have similar tag IDs with the same prefix. Unnecessary collisions occur while identifying multiple tags using Query Tree protocol. It results in growth of query-responses and idle time, which the identification time significantly increases. To solve this problem, Collision Tree protocol and M-ary Query Tree protocol have been proposed. However, in Collision Tree protocol and Query Tree protocol, only one bit is identified during one query-response. And, when similar tag IDs exist, M-ary Query Tree Protocol generates unnecessary query-responses. In this paper, we propose Adaptive M-ary Query Tree protocol that improves the identification performance using m-bit recognition, collision information of tag IDs, and prediction technique. We compare our proposed scheme with other Tree-based protocols under the same conditions. We show that our proposed scheme outperforms others in terms of identification time and identification efficiency.

An Analytical Approach Using Topic Mining for Improving the Service Quality of Hotels (호텔 산업의 서비스 품질 향상을 위한 토픽 마이닝 기반 분석 방법)

  • Moon, Hyun Sil;Sung, David;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.21-41
    • /
    • 2019
  • Thanks to the rapid development of information technologies, the data available on Internet have grown rapidly. In this era of big data, many studies have attempted to offer insights and express the effects of data analysis. In the tourism and hospitality industry, many firms and studies in the era of big data have paid attention to online reviews on social media because of their large influence over customers. As tourism is an information-intensive industry, the effect of these information networks on social media platforms is more remarkable compared to any other types of media. However, there are some limitations to the improvements in service quality that can be made based on opinions on social media platforms. Users on social media platforms represent their opinions as text, images, and so on. Raw data sets from these reviews are unstructured. Moreover, these data sets are too big to extract new information and hidden knowledge by human competences. To use them for business intelligence and analytics applications, proper big data techniques like Natural Language Processing and data mining techniques are needed. This study suggests an analytical approach to directly yield insights from these reviews to improve the service quality of hotels. Our proposed approach consists of topic mining to extract topics contained in the reviews and the decision tree modeling to explain the relationship between topics and ratings. Topic mining refers to a method for finding a group of words from a collection of documents that represents a document. Among several topic mining methods, we adopted the Latent Dirichlet Allocation algorithm, which is considered as the most universal algorithm. However, LDA is not enough to find insights that can improve service quality because it cannot find the relationship between topics and ratings. To overcome this limitation, we also use the Classification and Regression Tree method, which is a kind of decision tree technique. Through the CART method, we can find what topics are related to positive or negative ratings of a hotel and visualize the results. Therefore, this study aims to investigate the representation of an analytical approach for the improvement of hotel service quality from unstructured review data sets. Through experiments for four hotels in Hong Kong, we can find the strengths and weaknesses of services for each hotel and suggest improvements to aid in customer satisfaction. Especially from positive reviews, we find what these hotels should maintain for service quality. For example, compared with the other hotels, a hotel has a good location and room condition which are extracted from positive reviews for it. In contrast, we also find what they should modify in their services from negative reviews. For example, a hotel should improve room condition related to soundproof. These results mean that our approach is useful in finding some insights for the service quality of hotels. That is, from the enormous size of review data, our approach can provide practical suggestions for hotel managers to improve their service quality. In the past, studies for improving service quality relied on surveys or interviews of customers. However, these methods are often costly and time consuming and the results may be biased by biased sampling or untrustworthy answers. The proposed approach directly obtains honest feedback from customers' online reviews and draws some insights through a type of big data analysis. So it will be a more useful tool to overcome the limitations of surveys or interviews. Moreover, our approach easily obtains the service quality information of other hotels or services in the tourism industry because it needs only open online reviews and ratings as input data. Furthermore, the performance of our approach will be better if other structured and unstructured data sources are added.

An Analysis of IT Trends Using Tweet Data (트윗 데이터를 활용한 IT 트렌드 분석)

  • Yi, Jin Baek;Lee, Choong Kwon;Cha, Kyung Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.143-159
    • /
    • 2015
  • Predicting IT trends has been a long and important subject for information systems research. IT trend prediction makes it possible to acknowledge emerging eras of innovation and allocate budgets to prepare against rapidly changing technological trends. Towards the end of each year, various domestic and global organizations predict and announce IT trends for the following year. For example, Gartner Predicts 10 top IT trend during the next year, and these predictions affect IT and industry leaders and organization's basic assumptions about technology and the future of IT, but the accuracy of these reports are difficult to verify. Social media data can be useful tool to verify the accuracy. As social media services have gained in popularity, it is used in a variety of ways, from posting about personal daily life to keeping up to date with news and trends. In the recent years, rates of social media activity in Korea have reached unprecedented levels. Hundreds of millions of users now participate in online social networks and communicate with colleague and friends their opinions and thoughts. In particular, Twitter is currently the major micro blog service, it has an important function named 'tweets' which is to report their current thoughts and actions, comments on news and engage in discussions. For an analysis on IT trends, we chose Tweet data because not only it produces massive unstructured textual data in real time but also it serves as an influential channel for opinion leading on technology. Previous studies found that the tweet data provides useful information and detects the trend of society effectively, these studies also identifies that Twitter can track the issue faster than the other media, newspapers. Therefore, this study investigates how frequently the predicted IT trends for the following year announced by public organizations are mentioned on social network services like Twitter. IT trend predictions for 2013, announced near the end of 2012 from two domestic organizations, the National IT Industry Promotion Agency (NIPA) and the National Information Society Agency (NIA), were used as a basis for this research. The present study analyzes the Twitter data generated from Seoul (Korea) compared with the predictions of the two organizations to analyze the differences. Thus, Twitter data analysis requires various natural language processing techniques, including the removal of stop words, and noun extraction for processing various unrefined forms of unstructured data. To overcome these challenges, we used SAS IRS (Information Retrieval Studio) developed by SAS to capture the trend in real-time processing big stream datasets of Twitter. The system offers a framework for crawling, normalizing, analyzing, indexing and searching tweet data. As a result, we have crawled the entire Twitter sphere in Seoul area and obtained 21,589 tweets in 2013 to review how frequently the IT trend topics announced by the two organizations were mentioned by the people in Seoul. The results shows that most IT trend predicted by NIPA and NIA were all frequently mentioned in Twitter except some topics such as 'new types of security threat', 'green IT', 'next generation semiconductor' since these topics non generalized compound words so they can be mentioned in Twitter with other words. To answer whether the IT trend tweets from Korea is related to the following year's IT trends in real world, we compared Twitter's trending topics with those in Nara Market, Korea's online e-Procurement system which is a nationwide web-based procurement system, dealing with whole procurement process of all public organizations in Korea. The correlation analysis show that Tweet frequencies on IT trending topics predicted by NIPA and NIA are significantly correlated with frequencies on IT topics mentioned in project announcements by Nara market in 2012 and 2013. The main contribution of our research can be found in the following aspects: i) the IT topic predictions announced by NIPA and NIA can provide an effective guideline to IT professionals and researchers in Korea who are looking for verified IT topic trends in the following topic, ii) researchers can use Twitter to get some useful ideas to detect and predict dynamic trends of technological and social issues.

Development of Joint-Based Motion Prediction Model for Home Co-Robot Using SVM (SVM을 이용한 가정용 협력 로봇의 조인트 위치 기반 실행동작 예측 모델 개발)

  • Yoo, Sungyeob;Yoo, Dong-Yeon;Park, Ye-Seul;Lee, Jung-Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.12
    • /
    • pp.491-498
    • /
    • 2019
  • Digital twin is a technology that virtualizes physical objects of the real world on a computer. It is used by collecting sensor data through IoT, and using the collected data to connect physical objects and virtual objects in both directions. It has an advantage of minimizing risk by tuning an operation of virtual model through simulation and responding to varying environment by exploiting experiments in advance. Recently, artificial intelligence and machine learning technologies have been attracting attention, so that tendency to virtualize a behavior of physical objects, observe virtual models, and apply various scenarios is increasing. In particular, recognition of each robot's motion is needed to build digital twin for co-robot which is a heart of industry 4.0 factory automation. Compared with modeling based research for recognizing motion of co-robot, there are few attempts to predict motion based on sensor data. Therefore, in this paper, an experimental environment for collecting current and inertia data in co-robot to detect the motion of the robot is built, and a motion prediction model based on the collected sensor data is proposed. The proposed method classifies the co-robot's motion commands into 9 types based on joint position and uses current and inertial sensor values to predict them by accumulated learning. The data used for accumulating learning is the sensor values that are collected when the co-robot operates with margin in input parameters of the motion commands. Through this, the model is constructed to predict not only the nine movements along the same path but also the movements along the similar path. As a result of learning using SVM, the accuracy, precision, and recall factors of the model were evaluated as 97% on average.

The Analysis of the Number of Donations Based on a Mixture of Poisson Regression Model (포아송 분포의 혼합모형을 이용한 기부 횟수 자료 분석)

  • Kim In-Young;Park Su-Bum;Kim Byung-Soo;Park Tae-Kyu
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • The aim of this study is to analyse a survey data on the number of charitable donations using a mixture of two Poisson regression models. The survey was conducted in 2002 by Volunteer 21, an nonprofit organization, based on Koreans, who were older than 20. The mixture of two Poisson distributions is used to model the number of donations based on the empirical distribution of the data. The mixture of two Poisson distributions implies the whole population is subdivided into two groups, one with lesser number of donations and the other with larger number of donations. We fit the mixture of Poisson regression models on the number of donations to identify significant covariates. The expectation-maximization algorithm is employed to estimate the parameters. We computed 95% bootstrap confidence interval based on bias-corrected and accelerated method and used then for selecting significant explanatory variables. As a result, the income variable with four categories and the volunteering variable (1: experience of volunteering, 0: otherwise) turned out to be significant with the positive regression coefficients both in the lesser and the larger donation groups. However, the regression coefficients in the lesser donation group were larger than those in larger donation group.