• Title/Summary/Keyword: Information Security Learning

Search Result 1,001, Processing Time 0.032 seconds

A Study on Biometric Model for Information Security (정보보안을 위한 생체 인식 모델에 관한 연구)

  • Jun-Yeong Kim;Se-Hoon Jung;Chun-Bo Sim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.317-326
    • /
    • 2024
  • Biometric recognition is a technology that determines whether a person is identified by extracting information on a person's biometric and behavioral characteristics with a specific device. Cyber threats such as forgery, duplication, and hacking of biometric characteristics are increasing in the field of biometrics. In response, the security system is strengthened and complex, and it is becoming difficult for individuals to use. To this end, multiple biometric models are being studied. Existing studies have suggested feature fusion methods, but comparisons between feature fusion methods are insufficient. Therefore, in this paper, we compared and evaluated the fusion method of multiple biometric models using fingerprint, face, and iris images. VGG-16, ResNet-50, EfficientNet-B1, EfficientNet-B4, EfficientNet-B7, and Inception-v3 were used for feature extraction, and the fusion methods of 'Sensor-Level', 'Feature-Level', 'Score-Level', and 'Rank-Level' were compared and evaluated for feature fusion. As a result of the comparative evaluation, the EfficientNet-B7 model showed 98.51% accuracy and high stability in the 'Feature-Level' fusion method. However, because the EfficietnNet-B7 model is large in size, model lightweight studies are needed for biocharacteristic fusion.

A Study on the Impact of Noise on YOLO-based Object Detection in Autonomous Driving Environments

  • Ra Yeong Kim;Hyun-Jong Cha;Ah Reum Kang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.10
    • /
    • pp.69-75
    • /
    • 2024
  • Noise caused by adverse weather conditions in data collected during autonomous driving can lead to object recognition errors, potentially resulting in critical accidents. While this risk is widely acknowledged, there is a lack of research that quantitatively and systematically analyzes it. Therefore, this study aims to examine and quantify the extent to which noise affects object detection in autonomous driving environments. To this end, we utilized the YOLO v5 model trained on unprocessed datasets. The test data were divided into noise ratios of 0% (Original), 20%, 40%, 60%, and 80%, and the detection results were evaluated by constructing a Confusion Matrix. Experimental results show that as the noise ratio increases, the True Positive (TP) rate decreases, and the F1-score also significantly drops across all noise levels, specifically from 0.69 to 0.47, 0.29, 0.18, and 0.14. These findings are expected to contribute to enhancing the stability of autonomous driving technology. Future research will focus on collecting real datasets that include naturally occurring noise and developing more effective noise removal techniques.

Degree Programs in Data Science at the School of Information in the States (미국 정보 대학의 데이터사이언스 학위 현황 연구)

  • Park, Hyoungjoo
    • Journal of Korean Library and Information Science Society
    • /
    • v.53 no.2
    • /
    • pp.305-332
    • /
    • 2022
  • This preliminary study examined the degree programs in data science at the School of Information in the States. The focus of this study was the data science degrees offered at the School of Information awarded by the 64 Library and Information Science (LIS) programs accredited by the American Library Association (ALA) in 2022. In addition, this study examined the degrees, majors, minors, specialized tracks, and certificates in data science, as well as the potential careers after earning a data science degree. Overall, eight Schools of Information (iSchools) offered 12 data science degrees. Data science courses at the School of Information focus on topics such as introduction to data science, information retrieval, data mining, database, data and humanities, machine learning, metadata, research methods, data analysis and visualization, internship/capstone, ethics and security, user, policy, and curation and management. Most schools did not offer traditional LIS courses. After earning the data science degree in the School of Information, the potential careers included data scientists, data engineers and data analysts. The researcher hopes the findings of this study can be used as a starting point to discuss the directions of data science programs from the perspectives of the information field, specifically the degrees, majors, minors, specialized tracks and certificates in data science.

A Ship-Wake Joint Detection Using Sentinel-2 Imagery

  • Woojin, Jeon;Donghyun, Jin;Noh-hun, Seong;Daeseong, Jung;Suyoung, Sim;Jongho, Woo;Yugyeong, Byeon;Nayeon, Kim;Kyung-Soo, Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.77-86
    • /
    • 2023
  • Ship detection is widely used in areas such as maritime security, maritime traffic, fisheries management, illegal fishing, and border control, and ship detection is important for rapid response and damage minimization as ship accident rates increase due to recent increases in international maritime traffic. Currently, according to a number of global and national regulations, ships must be equipped with automatic identification system (AIS), which provide information such as the location and speed of the ship periodically at regular intervals. However, most small vessels (less than 300 tons) are not obligated to install the transponder and may not be transmitted intentionally or accidentally. There is even a case of misuse of the ship'slocation information. Therefore, in this study, ship detection was performed using high-resolution optical satellite images that can periodically remotely detect a wide range and detectsmallships. However, optical images can cause false-alarm due to noise on the surface of the sea, such as waves, or factors indicating ship-like brightness, such as clouds and wakes. So, it is important to remove these factors to improve the accuracy of ship detection. In this study, false alarm wasreduced, and the accuracy ofship detection wasimproved by removing wake.As a ship detection method, ship detection was performed using machine learning-based random forest (RF), and convolutional neural network (CNN) techniquesthat have been widely used in object detection fieldsrecently, and ship detection results by the model were compared and analyzed. In addition, in this study, the results of RF and CNN were combined to improve the phenomenon of ship disconnection and the phenomenon of small detection. The ship detection results of thisstudy are significant in that they improved the limitations of each model while maintaining accuracy. In addition, if satellite images with improved spatial resolution are utilized in the future, it is expected that ship and wake simultaneous detection with higher accuracy will be performed.

Operation of a 3-Year Training Program for Elementary and Secondary Administrators to Foster Creative Convergence Talent (창의융합 인재 양성을 위한 3년간의 초·중등 관리자 연수 프로그램 운영)

  • Jung, Yujin;Park, Namje
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.3
    • /
    • pp.177-186
    • /
    • 2021
  • The 2015 revised curriculum is structured around the core competencies of the 21st century, this is in line with the world's flow of education, such as OECD Education 2030. A future practical leading model was studied to provide a variety of creative teaching and learning experiences to elementary and Secondary students using intelligent information technology to cultivate core competencies such as ICT and computing thinking. In order for this practical model to stably settle the school field, the training was planned and operated to strengthen the creative convergence education capacity required by the teachers at the unit school through various types of the training. In particular, a nationwide administrators training program was operated for three years, reflecting the new curriculum, teaching and learning methods, and evaluation that can lead to future convergence talent training. In this paper, the perception of creative convergence education was investigated and analyzed considering the influence that administrators may have on the school field. Based on this, through the three-year operation results of the training, it was intended to establish a new training method for stable access to future creative convergence education under the post-corona era's social issues.

Application of Artificial Intelligence Technology for Dam-Reservoir Operation in Long-Term Solution to Flood and Drought in Upper Mun River Basin

  • Areeya Rittima;JidapaKraisangka;WudhichartSawangphol;YutthanaPhankamolsil;Allan Sriratana Tabucanon;YutthanaTalaluxmana;VarawootVudhivanich
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.30-30
    • /
    • 2023
  • This study aims to establish the multi-reservoir operation system model in the Upper Mun River Basin which includes 5 main dams namely, Mun Bon (MB), Lamchae (LC), Lam Takhong (LTK), Lam Phraphoeng (LPP), and Lower Lam Chiengkrai (LLCK) Dams. The knowledge and AI technology were applied aiming to develop innovative prototype for SMART dam-reservoir operation in future. Two different sorts of reservoir operation system model namely, Fuzzy Logic (FL) and Constraint Programming (CP) as well as the development of rainfall and reservoir inflow prediction models using Machine Learning (ML) technique were made to help specify the right amount of daily reservoir releases for the Royal Irrigation Department (RID). The model could also provide the essential information particularly for the Office of National Water Resource of Thailand (ONWR) to determine the short-term and long-term water resource management plan and strengthen water security against flood and drought in this region. The simulated results of base case scenario for reservoir operation in the Upper Mun from 2008 to 2021 indicated that in the same circumstances, FL and CP models could specify the new release schemes to increase the reservoir water storages at the beginning of dry season of approximately 125.25 and 142.20 MCM per year. This means that supplying the agricultural water to farmers in dry season could be well managed. In other words, water scarcity problem could substantially be moderated at some extent in case of incapability to control the expansion of cultivated area size properly. Moreover, using AI technology to determine the new reservoir release schemes plays important role in reducing the actual volume of water shortfall in the basin although the drought situation at LTK and LLCK Dams were still existed in some periods of time. Meanwhile, considering the predicted inflow and hydrologic factors downstream of 5 main dams by FL model and minimizing the flood volume by CP model could ensure that flood risk was considerably minimized as a result of new release schemes.

  • PDF

A Study on the Development Direction of Medical Image Information System Using Big Data and AI (빅데이터와 AI를 활용한 의료영상 정보 시스템 발전 방향에 대한 연구)

  • Yoo, Se Jong;Han, Seong Soo;Jeon, Mi-Hyang;Han, Man Seok
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.9
    • /
    • pp.317-322
    • /
    • 2022
  • The rapid development of information technology is also bringing about many changes in the medical environment. In particular, it is leading the rapid change of medical image information systems using big data and artificial intelligence (AI). The prescription delivery system (OCS), which consists of an electronic medical record (EMR) and a medical image storage and transmission system (PACS), has rapidly changed the medical environment from analog to digital. When combined with multiple solutions, PACS represents a new direction for advancement in security, interoperability, efficiency and automation. Among them, the combination with artificial intelligence (AI) using big data that can improve the quality of images is actively progressing. In particular, AI PACS, a system that can assist in reading medical images using deep learning technology, was developed in cooperation with universities and industries and is being used in hospitals. As such, in line with the rapid changes in the medical image information system in the medical environment, structural changes in the medical market and changes in medical policies to cope with them are also necessary. On the other hand, medical image information is based on a digital medical image transmission device (DICOM) format method, and is divided into a tomographic volume image, a volume image, and a cross-sectional image, a two-dimensional image, according to a generation method. In addition, recently, many medical institutions are rushing to introduce the next-generation integrated medical information system by promoting smart hospital services. The next-generation integrated medical information system is built as a solution that integrates EMR, electronic consent, big data, AI, precision medicine, and interworking with external institutions. It aims to realize research. Korea's medical image information system is at a world-class level thanks to advanced IT technology and government policies. In particular, the PACS solution is the only field exporting medical information technology to the world. In this study, along with the analysis of the medical image information system using big data, the current trend was grasped based on the historical background of the introduction of the medical image information system in Korea, and the future development direction was predicted. In the future, based on DICOM big data accumulated over 20 years, we plan to conduct research that can increase the image read rate by using AI and deep learning algorithms.

A Comparative Study on Attitude of the Collegiate an4 Non-Collegiate Nursing Students toward Their Clinical Affiliation in a Mental Hospital (정신과 간호 실습에 대한 간호 대학생과 간호학교 학생들의 태도 비교 연구)

  • 김소야자
    • Journal of Korean Academy of Nursing
    • /
    • v.4 no.2
    • /
    • pp.17-31
    • /
    • 1974
  • Today, over seventy five percent of nursing in Korea provide a psychiatric experience in the basic curriculum. The psychiatric affiliation presents numerous major problems of adjustment to the student. The Importance of positive attitude toward the nursing care of psychiatric patients is recognized by the nursing profession. I have fined out the unfavorable attitude of non collegiate nursing students toward psychiatric nursing affiliation by previous research. This study was undertaken in response to a felt need to explore the use of several devices which might yield information about attitudes toward psychiatric nursing as a basis for future planning of the program offered at a selected hospital. This study is designed to meet the following objectives; (1) In order to find out the expressed attitudes of fifty·three collegiate nursing students toward their psychiatric affiliation. (2) To compare responses given by selected group of collegiate and non collegiate nursing students to same questionnaire (3) To determine the relationship between the attitudes of nursing students toward psychiatric nursing and the type of instructions where experience was obtained. A questionnaire, a Korean translation of the "Psychiatric Nursing Attitude Questionnaire" by Moldered Elizabeth fletcher, was administered to fifty-three collegiate nursing students who had completed a four-week psychiatric affiliation in a S hospital psychiatric ward during May 7, 1973 to Dec. 16, 1973. - The questionnaire of 100 statements was administered in the following way; (1) Part Ⅰ, Preconceptions, was, given in individual conferences with each subject, during the first few days of their affiliation, and again during the final week of affiliation. The responses to Part I were oral. (2) Part Ⅱ, Expectations, Part Ⅲ, Personal Relations, Part Ⅳ, Personal Feelings, and Part V, Attitudes and Activities of Patients were given to all of the subjects in a group meeting during the second week of the affiliation, and again, during the fourth week at the termination of the affiliation. Responses to Parts Ⅱ, Ⅲ, Ⅳ·, and V, were written. Each of the 100 statements of the questionnaire was considered to be either Positive or Negative. A favorable response was assigned the positive value of 1 and an unfavorable response was assigned the Negative value of O. The coefficient of correlation was computed between the two sets of scores for the fifty-three nursing students, The mean score, the standard deviation, and the differences in the means on each of the five parts of the questionnaire were computed and the relationships calculated by at-test. The results of the study were as follows; 1. There was no significant correlation between the two sets of the scores for the fifty-three nursing students during the four-week psychiatric affiliation. (r= 0.36) 2. There was no significant difference in the mean scores between the first and final tests for any of the questionnaire. 3. The Part Ⅰ, Preconceptions, data indicated collegiate nursing students have positive attitudes in preconceptions than non collegiate nursing students and preconceptions toward the psychiatric affiliation which affect their psychiatric nursing experience. 4. The Part Ⅱ, Expectations, data indicated more appropriate expectations of collegiate nursing students related to pre psychiatric affiliation orientation and sufficient theory learning than non-collegiate nursing students. 5. The Part Ⅲ, Personal relations, data indicated some students have negative attitudes in personal relations with normal people in respect to psychological security and social responsibilities. 6. The Part Ⅳ, Personal feelings, data indicated nursing students have psychological insecurity & inappropriateness. 7. The Part V, Attitudes and activities of patients, data indicated collegiate nursing students have more positive attitudes to the psychotic behavior of certain situations due to sufficient theory learning. 8. The data indicated collegiate·nursing students have more positive attitude than non-collegiate nursing students. 5. The Part Ⅲ, Personal relations, data indicated some students have negative attitudes in personal relations with normal people in respect to psychological security and social responsibilities. 6. The Part Ⅳ, Personal feelings, data indicated nursing students have psychological insecurity & inappropriateness. 7. The Part V, Attitudes and activities of patients, data indicated collegiate nursing students have more positive attitudes to the psychotic behavior of certain situations due to sufficient theory learning. 8. The data indicated collegiate·nursing students have more positive attitude than non-collegiate nursing students through psychiatric affiliation.

  • PDF

A Study on the Fast Enrollment of Text-Independent Speaker Verification for Vehicle Security (차량 보안을 위한 어구독립 화자증명의 등록시간 단축에 관한 연구)

  • Lee, Tae-Seung;Choi, Ho-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 2001
  • Speech has a good characteristics of which car drivers busy to concern with miscellaneous operation can make use in convenient handling and manipulating of devices. By utilizing this, this works proposes a speaker verification method for protecting cars from being stolen and identifying a person trying to access critical on-line services. In this, continuant phonemes recognition which uses language information of speech and MLP(mult-layer perceptron) which has some advantages against previous stochastic methods are adopted. The recognition method, though, involves huge computation amount for learning, so it is somewhat difficult to adopt this in speaker verification application in which speakers should enroll themselves at real time. To relieve this problem, this works presents a solution that introduces speaker cohort models from speaker verification score normalization technique established before, dividing background speakers into small cohorts in advance. As a result, this enables computation burden to be reduced through classifying the enrolling speaker into one of those cohorts and going through enrollment for only that cohort.

  • PDF

False Alarm Minimization Technology using SVM in Intrusion Prevention System (SVM을 이용한 침입방지시스템 오경보 최소화 기법)

  • Kim Gill-Han;Lee Hyung-Woo
    • Journal of Internet Computing and Services
    • /
    • v.7 no.3
    • /
    • pp.119-132
    • /
    • 2006
  • The network based security techniques well-known until now have week points to be passive in attacks and susceptible to roundabout attacks so that the misuse detection based intrusion prevention system which enables positive correspondence to the attacks of inline mode are used widely. But because the Misuse detection based Intrusion prevention system is proportional to the detection rules, it causes excessive false alarm and is linked to wrong correspondence which prevents the regular network flow and is insufficient to detect transformed attacks, This study suggests an Intrusion prevention system which uses Support Vector machines(hereinafter referred to as SVM) as one of rule based Intrusion prevention system and Anomaly System in order to supplement these problems, When this compared with existing intrusion prevention system, show performance result that improve about 20% and could through intrusion prevention system that propose false positive minimize and know that can detect effectively about new variant attack.

  • PDF