In this paper, the operation of the Korean digital key talent training project (K-Digital Training) supported by the Ministry of Labor in 2022 began in 2021, and through public offering in the second half of 2022, 403 training courses are held to secure 33,000 annual training personnel. Accordingly, because of performance analysis on learning satisfaction in each field of the state-led talent development program to respond quickly to future industrial changes by fostering digital talent, the overall satisfaction with the program was very high at 4.27 on average. However, the initial expectation for employment linkage is decreasing from 4.2 to 3.91 at the end of learning. Therefore, it is expected that the satisfaction level of the program can be continuously improved only when the organizations participating in the program are prepared in advance for employment linkage
Kim, Yeonsu;Ko, Younghun;Euom, Ieckchae;Kim, Kyungbaek
Journal of the Korea Institute of Information Security & Cryptology
/
v.30
no.4
/
pp.669-677
/
2020
As the number of Internet users exploded, attacks on the web increased. In addition, the attack patterns have been diversified to bypass existing defense techniques. Traditional web firewalls are difficult to detect attacks of unknown patterns.Therefore, the method of detecting abnormal behavior by artificial intelligence has been studied as an alternative. Specifically, attempts have been made to apply natural language processing techniques because the type of script or query being exploited consists of text. However, because there are many unknown words in scripts and queries, natural language processing requires a different approach. In this paper, we propose a new classification model which uses byte pair encoding (BPE) technology to learn the embedding vector, that is often used for web attack payloads, and uses an attention mechanism-based Bi-GRU neural network to extract a set of tokens that learn their order and importance. For major web attacks such as SQL injection, cross-site scripting, and command injection attacks, the accuracy of the proposed classification method is about 0.9990 and its accuracy outperforms the model suggested in the previous study.
Journal of the Korea Society of Computer and Information
/
v.11
no.6
s.44
/
pp.165-174
/
2006
This paper attacked the unknown DoS which mixed a DoS attack, Worm and the Trojan horse which used IP Source Address Spoofing and Smurf through the SYN Flooding way that UDP, ICMP, Echo, TCP Syn packet operated, the applications that used TCP/UDP in VoIP service networks. Define necessity of a Dynamic Update Engine for a prevention, and measure Miss traffic at RT statistics of inbound and outbound parts in case of designs of an engine at IPS regarding an Self-learning module and a statistical attack spread, and design a logic engine module. Three engines judge attack grades (Attack, Suspicious, Normal), and keep the most suitable filtering engine state through AND or OR algorithms at Footprint Lookup modules. A Real-Time Dynamic Engine and Filter updated protected VoIP service from DoS attacks, and strengthened Ubiquitous Security anger, and were turned out to be.
Journal of the Korea Academia-Industrial cooperation Society
/
v.21
no.10
/
pp.454-460
/
2020
In recent years, the rapid increases in video distribution and viewing over the Internet have increased the risk of personal information exposure. In this paper, a method is proposed to robustly identify areas in images where a person's privacy is compromised and simultaneously blocking the object area by blurring it while rapidly tracking it using a prediction algorithm. With this method, the target object area is accurately identified using artificial neural network-based learning. The detected object area is then tracked using a location prediction algorithm and is continuously blocked by blurring it. Experimental results show that the proposed method effectively blocks private areas in images by blurring them, while at the same time tracking the target objects about 2.5% more accurately than another existing method. The proposed blocking method is expected to be useful in many applications, such as protection of personal information, video security, object tracking, etc.
Journal of the Korea Institute of Information Security & Cryptology
/
v.29
no.6
/
pp.1235-1242
/
2019
While several machine learning technique has been implemented for Android malware categorization, there is still difficulty in analyzing due to overfitting problem and including of un-executable code, etc. In this paper, we introduce our implemented tool to address these problems. Tool is consists of approximately 1,500 lines of Java code, and perform Flow analysis on set of APIs, or on control flow graph. Our tool groups all the API by its relationship and only perform analysis on actually executing code. Using our tool, we grouped 39032 APIs into 4972 groups, and 12123 groups with result of including class names. We collected 7,000 APKs from 7 families and evaluated our feature reduction technique, and we also reduced features again with selecting APIs that have frequency more than 20%. We finally reduced features to 263-numbers of feature for our collected APKs.
International Journal of Computer Science & Network Security
/
v.21
no.3
/
pp.21-30
/
2021
Economic transformations have led to an increase in the role of creative assets and their central role in public life. Changes in creative activity have led to a change in the organization of the work of institutes engaged in the training of specialists, in particular teachers of labor education. Methods and approaches to training determine the development of creative industries, being the basis for models of professional training of future teachers of labor training. The purpose of an article was to develop a modern model of professional training of future teachers of labor training based on the concept of creative economy. The methodology is based on the concepts of holistic craft and creative economy. Based on the integration of pedagogical learning models "Craft as design and problem-solving", "Craft as skill and knowledge building", "Craft as product-making" and "Craft as self-expression" developed and experimentally confirmed the conceptual model of professional training of future teachers of labor training. The proposed model forms a practitioner with professional, technical, digital and creative skills who is able to transfer the experience to students. The training course "Creativity and creative thinking" has been developed. The model provided for the development of a course based on the strategy of developing professional creativity, flexibility, improvisation, openness, student activity, joint practice, student-oriented approach. The practical value implies the adaptation of the developed model of professional training of future teachers of labor education during the training of teachers in higher education, which is confirmed in the experiment.
Journal of the Korea Institute of Information Security & Cryptology
/
v.30
no.6
/
pp.1067-1078
/
2020
With the development of internet technology, a lot of content is produced, and the demand for it is increasing. Accordingly, the number of contents in circulation is increasing, while the number of distributing illegal copies that infringe on copyright is also increasing. The Korea Copyright Protection Agency operates a illegal content obstruction program based on substring matching, and it is difficult to accurately search because a large number of noises are inserted to bypass this. Recently, researches using natural language processing and AI deep learning technologies to remove noise and various blockchain technologies for copyright protection are being studied, but there are limitations. In this paper, noise is removed from data collected online, and keyword-based illegal copies are searched. In addition, the same heavy uploader is estimated through profiling analysis for heavy uploaders. In the future, it is expected that copyright damage will be minimized if the illegal copy search technology and blocking and response technology are combined based on the results of profiling analysis for heavy uploaders.
Journal of the Korea Institute of Information Security & Cryptology
/
v.30
no.6
/
pp.1053-1065
/
2020
With the recent development of hardware performance and artificial intelligence technology, sophisticated fake videos that are difficult to distinguish with the human's eye are increasing. Face synthesis technology using artificial intelligence is called Deepfake, and anyone with a little programming skill and deep learning knowledge can produce sophisticated fake videos using Deepfake. A number of indiscriminate fake videos has been increased significantly, which may lead to problems such as privacy violations, fake news and fraud. Therefore, it is necessary to detect fake video clips that cannot be discriminated by a human eyes. Thus, in this paper, we propose a deep-fake detection model applied with Bidirectional Convolution LSTM and Attention Module. Unlike LSTM, which considers only the forward sequential procedure, the model proposed in this paper uses the reverse order procedure. The Attention Module is used with a Convolutional neural network model to use the characteristics of each frame for extraction. Experiments have shown that the model proposed has 93.5% accuracy and AUC is up to 50% higher than the results of pre-existing studies.
Journal of the Korea Institute of Information Security & Cryptology
/
v.32
no.6
/
pp.1127-1137
/
2022
Cryptographic analysis and decryption technology utilizing the parallel operation of GPU has been studied in the direction of shortening the computation time of the password analysis system. These studies focus on optimizing the code to improve the speed of cryptographic analysis operations on a single GPU or simply increasing the number of GPUs to enhance parallel operations. However, using a large number of GPUs without optimization for data transmission causes longer data transmission latency than using a single GPU and increases the overall computation time of the cryptographic analysis system. In this paper, we investigate GPUDirect RDMA and related technologies for high-performance data processing in deep learning or HPC research fields in GPU clustering environments. In addition, we present a method of designing a high-performance cryptanalysis system using the relevant technologies. Furthermore, based on the suggested system topology, we present a method of implementing a cryptanalysis system using password cracking and GPU reduction. Finally, the performance evaluation results are presented according to demonstration of high-performance technology is applied to the implemented cryptanalysis system, and the expected effects of the proposed system design are shown.
Journal of the Korea Institute of Information Security & Cryptology
/
v.33
no.6
/
pp.1087-1098
/
2023
The rapid advancement of artificial intelligence (AI) technology has led to its proactive utilization across various fields. However, this widespread adoption of AI-based systems has raised concerns about the increasing threat of attacks on these systems. In particular, deep neural networks, commonly used in deep learning, have been found vulnerable to adversarial attacks that intentionally manipulate input data to induce model errors. In this study, we propose a method to protect image classification models from visually imperceptible One-Pixel attacks, where only a single pixel is altered in an image. The proposed defense technique utilizes an autoencoder model to remove potential threat elements from input images before forwarding them to the classification model. Experimental results, using the CIFAR-10 dataset, demonstrate that the autoencoder-based defense approach significantly improves the robustness of pretrained image classification models against One-Pixel attacks, with an average defense rate enhancement of 81.2%, all without the need for modifications to the existing models.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.