Object motion is an important feature of content in video sequences. By now, various methods to exact feature about the object motion have been reported[1,2]. However they are not suitable to index video using the motion, since a lot of bits and complex indexing parameters are needed for the indexing [3,4] In this paper, we propose object motion map which could provide efficient indexing method for object motion. The proposed object motion map has both global and local motion information during an object is moving. Furthermore, it requires small bit of memory for the indexing. to evaluate performance of proposed indexing technique, experiments are performed with video database consisting of MPEG-1 video sequence in MPEG-7 test set.
Recently, surveillance systems are widely used, and one of the key technologies in this surveillance system is to recognize and track objects. In order to track a moving object robustly and efficiently in a complex environment, it is necessary to extract the feature points in the interesting object and to track the object using the feature points. In this paper, we propose a method to track interesting objects in real time by eliminating unnecessary information from objects, generating feature point descriptors using only key feature points, and reducing computational complexity for object recognition. Experimental results show that the proposed method is faster and more robust than conventional methods, and can accurately track objects in various environments.
본 논문에서는 MPEG-2 비트열로부터 객체 기반 MPEG-4로의 고속 변환을 위한 정보 추출 알고리즘을 소개한다. 객체 기반 MPEG-4로의 변환을 위한 정보로써 객체 영상과 형상 정보, 매크로블록 움직임 벡터, 헤더정보가 MPEG-2로부터 추출된다. 추출된 정보를 이용하면 객체 기반 MPEG-4로의 고속 변환이 가능하다. 가장 중요한 정보인 객체 영상 추출은 MPEG-2의 움직임 벡터와 워터쉐드 알고리즘을 이용하여 이루어진다. 사용자의 인지정보를 이용하여 프레임 내에서 객체를 추출하고, 추출된 객체로 연속된 프레임에서 객체를 추적하게 된다. 수행 중 객체의 빠른 움직임으로 만족스럽지 못한 결과를 내더라도, 사용자가 개입하여 다시 좋은 결과를 얻을 수 있도록 하였다. 객체 추적 과정은 크게 두 단계로 객체 추출 단계와 객체 추적 단계로 나누어져 있다. 객체 추출 단계는 블록분류와 워터쉐드 알고리즘으로 자동 분할된 영상에서 사용자가 직접 객체를 추출하는 단계이다. 사용자가 개입하는 단계이기 때문에, 번거로울 수 있으나 손쉽게 추출할 수 있도록 구현하였다. 객체 추적 단계는 연속된 프레임 에서 객체를 추적하는 단계로 MPEG-2 움직임 벡터와 객체 모양 정보를 이용하여 고속으로 구해지고 워터쉐드 알고리즘으로 윤곽선 보정작업을 하였다. 실험 결과 MPEG-2 비트스트림으로부터 객체 기반 MPEG-4로의 고속변환이 가능함을 알 수 있었다.
In this paper, an object recognition method based on the depth information from the RGB-D camera, Xtion, is proposed for an indoor mobile robot. First, the RANdom SAmple Consensus (RANSAC) algorithm is applied to the point cloud obtained from the RGB-D camera to detect and remove the floor points. Next, the removed point cloud is classified by the k-means clustering method as each object's point cloud, and the normal vector of each point is obtained by using the k-d tree search. The obtained normal vectors are classified by the trained multi-layer perceptron as 18 classes and used as features for object recognition. To distinguish an object from another object, the similarity between them is measured by using Levenshtein distance. To verify the effectiveness and feasibility of the proposed object recognition method, the experiments are carried out with several similar boxes.
Zhang, Yikun;Yao, Rui;Jiang, Qingnan;Zhang, Changbin;Wang, Shi
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권3호
/
pp.1434-1449
/
2019
Video object segmentation is a significant task in computer vision, but its performance is not very satisfactory. A method of video object segmentation using weakly temporal information is presented in this paper. Motivated by the phenomenon in reality that the motion of the object is a continuous and smooth process and the appearance of the object does not change much between adjacent frames in the video sequences, we use a feed-forward architecture with motion estimation to predict the mask of the current frame. We extend an additional mask channel for the previous frame segmentation result. The mask of the previous frame is treated as the input of the expanded channel after processing, and then we extract the temporal feature of the object and fuse it with other feature maps to generate the final mask. In addition, we introduce multi-mask guidance to improve the stability of the model. Moreover, we enhance segmentation performance by further training with the masks already obtained. Experiments show that our method achieves competitive results on DAVIS-2016 on single object segmentation compared to some state-of-the-art algorithms.
최근에 인터넷과 통신망의 활성화로 인하여 멀티미디어 정보들을 효율적으로 관리하고 서비스하기 위한 여러 가지 방법들의 제안되고 있다. 본 논문에서는 퍼지 기반의 멀티미디어 사서함 구축을 위한 객체관리기로서 $\alpha$-cut 을 이용한 FBOM을 제안한다. 제안된 시스템은 퍼지 필터링을 이용하여 객체들을 고나리하기 위해 객체 분류, 퍼지 필터링, 클래스 생성구조를 이용한다. 또한 제안된 시스템의 성능을 알아보기 위해 1000개의 멀티미디어 정보를 이용하여 실험을 수행하고, 랜덤 키 방법과 FBOM 방법을 비교 분석한다.
Park, Sung-Jun;Islam, Md. Mahbubul;Baek, Joong-Hwan
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권3호
/
pp.1121-1141
/
2020
We propose a robust visual object tracking algorithm fusing a convolutional neural network tracker trained offline from a large number of video repositories and a color histogram based tracker to track objects for mixing immersive audio. Our algorithm addresses the problem of occlusion and large movements of the CNN based GOTURN generic object tracker. The key idea is the offline training of a binary classifier with the color histogram similarity values estimated via both trackers used in this method to opt appropriate tracker for target tracking and update both trackers with the predicted bounding box position of the target to continue tracking. Furthermore, a histogram similarity constraint is applied before updating the trackers to maximize the tracking accuracy. Finally, we compute the depth(z) of the target object by one of the prominent unsupervised monocular depth estimation algorithms to ensure the necessary 3D position of the tracked object to mix the immersive audio into that object. Our proposed algorithm demonstrates about 2% improved accuracy over the outperforming GOTURN algorithm in the existing VOT2014 tracking benchmark. Additionally, our tracker also works well to track multiple objects utilizing the concept of single object tracker but no demonstrations on any MOT benchmark.
에지나 윤곽 정보는 인간의 시각 시스템에 의하여 가장 잘 인식되며 객체의 인식과 지각에 사용되는 중요한 정보이다. 그러므로 비디오내의 객체간의 상호작용, 객체기반 코딩과 표현과 같은 응용을 위하여, 비디오객체의 추출과정에 에지정보를 적용하면 인간의 시각 시스템과 근접한 객체 경계를 얻을 수 있다. 대부분의 객체추출 방식은 연산량이 많고 반복적인 연산을 수행하므로 실시간 처리가 어렵다. 본 논문에서는 비디오객체 분할 과정에 에지 정보를 적용하여 정확한 객체 경계를 추출하는 VLSI 구조를 제안한다. 제안된 하드웨어 구조는 연산방식이 간단하므로 하드웨어로 쉽게 구현될 수 있으며, 제안된 VLSI 하드웨어 구조를 이용하면 객체기반 멀티미디어 응용을 위하여 실시간으로 비디오객체를 분할할 수 있다.
현재의 객체 추적과 검색의 과정을 보면 고정된 단일 카메라를 통해 입력받은 영상에서 객체를 추출하여 추적하고, 추적된 객체의 구체적인 정보를 알기 위해 줌(Zoom) 기능으로 객체를 인식하는 과정이었다. 본 논문은 다중카메라를 이용하여 객체를 추적하고, 인식하는 것으로써 추적된 객체에 대해 검색인식가능한 영역에 대한 정보를 증강현실로 나타내는 시스템을 제안한다. 제안 시스템의 실험결과를 보면 연산에 포함된 픽셀 수가 현저히 줄어들고, 객체의 인식률이 향상되고, 정보 확인 시간도 단축되었다. 그리고 기존 방법과 비교하여 객체의 움직임을 검출하는 정확성은 물론 움직임 검출에 소요되는 시간도 단축되어 개선된 성능을 보였다.
본 논문에서는 건물 구조 통합 구조설계 시스템의 구현을 위한 설계모델인 설계 객체 모델을 제안하였다. 건물 구조에 대한 구조 설계 정보를 단계(초기구조설계, 해석, 상세설계) / 계층(시스템, 서브시스템, 콤퍼넌트)별로 분류 모델링한 후, 제시된 요구조건에 대한 세부관점별 해결방법을 고려하여 설계 객체 모델을 개발하였다. 이와 같은 방법론을 통하여 시스템 구현을 고려한 설계 객체 모델의 체계적 분석과 모델링이 가능하였다. 제시된 설계 객체 모델은 계획 설계 측면의 설계정보 표현을 통하여 효율적인 설계정보의 관리가 가능하며, 위상 설계 객체에 의한 공간상 구조부재의 인식이 용이하고, 해석 관련 설계정보를 이해하기 용이한 표현으로 관리할 수 있게 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.