• 제목/요약/키워드: Information Fusion

검색결과 1,895건 처리시간 0.024초

FS-Transformer: A new frequency Swin Transformer for multi-focus image fusion

  • Weiping Jiang;Yan Wei;Hao Zhai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권7호
    • /
    • pp.1907-1928
    • /
    • 2024
  • In recent years, multi-focus image fusion has emerged as a prominent area of research, with transformers gaining recognition in the field of image processing. Current approaches encounter challenges such as boundary artifacts, loss of detailed information, and inaccurate localization of focused regions, leading to suboptimal fusion outcomes necessitating subsequent post-processing interventions. To address these issues, this paper introduces a novel multi-focus image fusion technique leveraging the Swin Transformer architecture. This method integrates a frequency layer utilizing Wavelet Transform, enhancing performance in comparison to conventional Swin Transformer configurations. Additionally, to mitigate the deficiency of local detail information within the attention mechanism, Convolutional Neural Networks (CNN) are incorporated to enhance region recognition accuracy. Comparative evaluations of various fusion methods across three datasets were conducted in the paper. The experimental findings demonstrate that the proposed model outperformed existing techniques, yielding superior quality in the resultant fused images.

Multi-Attribute Data Fusion for Energy Equilibrium Routing in Wireless Sensor Networks

  • Lin, Kai;Wang, Lei;Li, Keqiu;Shu, Lei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제4권1호
    • /
    • pp.5-24
    • /
    • 2010
  • Data fusion is an attractive technology because it allows various trade-offs related to performance metrics, e.g., energy, latency, accuracy, fault-tolerance and security in wireless sensor networks (WSNs). Under a complicated environment, each sensor node must be equipped with more than one type of sensor module to monitor multi-targets, so that the complexity for the fusion process is increased due to the existence of various physical attributes. In this paper, we first investigate the process and performance of multi-attribute fusion in data gathering of WSNs, and then propose a self-adaptive threshold method to balance the different change rates of each attributive data. Furthermore, we present a method to measure the energy-conservation efficiency of multi-attribute fusion. Based on our proposed methods, we design a novel energy equilibrium routing method for WSNs, viz., multi-attribute fusion tree (MAFT). Simulation results demonstrate that MAFT achieves very good performance in terms of the network lifetime.

Association Rule Mining by Environmental Data Fusion

  • Cho, Kwang-Hyun;Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권2호
    • /
    • pp.279-287
    • /
    • 2007
  • Data fusion is the process of combining multiple data in order to produce information of tactical value to the user. Data fusion is generally defined as the use of techniques that combine data from multiple sources and gather that information in order to achieve inferences. Data fusion is also called data combination or data matching. Data fusion is divided in five branch types which are exact matching, judgemental matching, probability matching, statistical matching, and data linking. In this paper, we develop was macro program for statistical matching which is one of five branch types for data fusion. And then we apply data fusion and association rule techniques to environmental data.

  • PDF

Perceptual Fusion of Infrared and Visible Image through Variational Multiscale with Guide Filtering

  • Feng, Xin;Hu, Kaiqun
    • Journal of Information Processing Systems
    • /
    • 제15권6호
    • /
    • pp.1296-1305
    • /
    • 2019
  • To solve the problem of poor noise suppression capability and frequent loss of edge contour and detailed information in current fusion methods, an infrared and visible light image fusion method based on variational multiscale decomposition is proposed. Firstly, the fused images are separately processed through variational multiscale decomposition to obtain texture components and structural components. The method of guided filter is used to carry out the fusion of the texture components of the fused image. In the structural component fusion, a method is proposed to measure the fused weights with phase consistency, sharpness, and brightness comprehensive information. Finally, the texture components of the two images are fused. The structure components are added to obtain the final fused image. The experimental results show that the proposed method displays very good noise robustness, and it also helps realize better fusion quality.

Optimal Strategies for Cooperative Spectrum Sensing in Multiple Cross-over Cognitive Radio Networks

  • Hu, Hang;Xu, Youyun;Liu, Zhiwen;Li, Ning;Zhang, Hang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권12호
    • /
    • pp.3061-3080
    • /
    • 2012
  • To improve the sensing performance, cooperation among secondary users can be utilized to collect space diversity. In this paper, we focus on the optimization of cooperative spectrum sensing in which multiple cognitive users efficiently cooperate to achieve superior detection accuracy with minimum sensing error probability in multiple cross-over cognitive radio networks. The analysis focuses on two fusion strategies: soft information fusion and hard information fusion. Under soft information fusion, the optimal threshold of the energy detector is derived in both noncooperative single-user and cooperative multiuser sensing scenarios. Under hard information fusion, the optimal randomized rule and the optimal decision threshold are derived according to the rule of minimum sensing error (MSE). MSE rule shows better performance on improving the final false alarm and detection probability simultaneously. By simulations, our proposed strategy optimizes the sensing performance for each cognitive user which is randomly distributed in the multiple cross-over cognitive radio networks.

A Study of Association Rule Mining by Clustering through Data Fusion

  • Cho, Kwang-Hyun;Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권4호
    • /
    • pp.927-935
    • /
    • 2007
  • Currently, Gyeongnam province is executing the social index survey every year to the provincials. But, this survey has the limit of the analysis as execution of the different survey per 3 year cycles. The solution of this problem is data fusion. Data fusion is the process of combining multiple data in order to provide information of tactical value to the user. But, data fusion doesn#t mean the ultimate result. Therefore, efficient analysis for the data fusion is also important. In this study, we present data fusion method of statistical survey data. Also, we suggest application methodology of association rule mining by clustering through data fusion of statistical survey data.

  • PDF

Generalized Gaussian Noise에서의 무선센서 네트워크의 Decision Fusion Rule의 성능 분석에 관한 연구 (Performance Evaluation of Decision Fusion Rules of Wireless Sensor Networks in Generalized Gaussian Noise)

  • 박진태;구인수;김기선
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.97-98
    • /
    • 2006
  • Fusion of decisions from multiple distributed sensor nodes is studied in this work. Based on the canonical parallel fusion model, we derive the optimal likelihood ratio based fusion rule with the assumptions of the generalized Gaussian noise model and the arbitrary fading channel. This optimal fusion rule, however, requires the complete knowledge of the channels and the detection performance of local sensor nodes. To mitigate these requirements and to provide near optimum performance, we derive suboptimum fusion rules by using high and low signal-to-noise ratio (SNR) approximations to the optimal fusion rule. Performance evaluation is conducted through simulations.

  • PDF

Multi-Level Fusion Processing Algorithm for Complex Radar Signals Based on Evidence Theory

  • Tian, Runlan;Zhao, Rupeng;Wang, Xiaofeng
    • Journal of Information Processing Systems
    • /
    • 제15권5호
    • /
    • pp.1243-1257
    • /
    • 2019
  • As current algorithms unable to perform effective fusion processing of unknown complex radar signals lacking database, and the result is unstable, this paper presents a multi-level fusion processing algorithm for complex radar signals based on evidence theory as a solution to this problem. Specifically, the real-time database is initially established, accompanied by similarity model based on parameter type, and then similarity matrix is calculated. D-S evidence theory is subsequently applied to exercise fusion processing on the similarity of parameters concerning each signal and the trust value concerning target framework of each signal in order. The signals are ultimately combined and perfected. The results of simulation experiment reveal that the proposed algorithm can exert favorable effect on the fusion of unknown complex radar signals, with higher efficiency and less time, maintaining stable processing even of considerable samples.

A Study on a Statistical Matching Method Using Clustering for Data Enrichment

  • Kim Soon Y.;Lee Ki H.;Chung Sung S.
    • Communications for Statistical Applications and Methods
    • /
    • 제12권2호
    • /
    • pp.509-520
    • /
    • 2005
  • Data fusion is defined as the process of combining data and information from different sources for the effectiveness of the usage of useful information contents. In this paper, we propose a data fusion algorithm using k-means clustering method for data enrichment to improve data quality in knowledge discovery in database(KDD) process. An empirical study was conducted to compare the proposed data fusion technique with the existing techniques and shows that the newly proposed clustering data fusion technique has low MSE in continuous fusion variables.

A multisource image fusion method for multimodal pig-body feature detection

  • Zhong, Zhen;Wang, Minjuan;Gao, Wanlin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권11호
    • /
    • pp.4395-4412
    • /
    • 2020
  • The multisource image fusion has become an active topic in the last few years owing to its higher segmentation rate. To enhance the accuracy of multimodal pig-body feature segmentation, a multisource image fusion method was employed. Nevertheless, the conventional multisource image fusion methods can not extract superior contrast and abundant details of fused image. To superior segment shape feature and detect temperature feature, a new multisource image fusion method was presented and entitled as NSST-GF-IPCNN. Firstly, the multisource images were resolved into a range of multiscale and multidirectional subbands by Nonsubsampled Shearlet Transform (NSST). Then, to superior describe fine-scale texture and edge information, even-symmetrical Gabor filter and Improved Pulse Coupled Neural Network (IPCNN) were used to fuse low and high-frequency subbands, respectively. Next, the fused coefficients were reconstructed into a fusion image using inverse NSST. Finally, the shape feature was extracted using automatic threshold algorithm and optimized using morphological operation. Nevertheless, the highest temperature of pig-body was gained in view of segmentation results. Experiments revealed that the presented fusion algorithm was able to realize 2.102-4.066% higher average accuracy rate than the traditional algorithms and also enhanced efficiency.