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Abstract 
As current algorithms unable to perform effective fusion processing of unknown complex radar signals lacking 
database, and the result is unstable, this paper presents a multi-level fusion processing algorithm for complex 
radar signals based on evidence theory as a solution to this problem. Specifically, the real-time database is 
initially established, accompanied by similarity model based on parameter type, and then similarity matrix is 
calculated. D-S evidence theory is subsequently applied to exercise fusion processing on the similarity of 
parameters concerning each signal and the trust value concerning target framework of each signal in order. The 
signals are ultimately combined and perfected. The results of simulation experiment reveal that the proposed 
algorithm can exert favorable effect on the fusion of unknown complex radar signals, with higher efficiency and 
less time, maintaining stable processing even of considerable samples. 
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1. Introduction 

Signal processing, as a significant technique in electronic information system, is of the essence for radar 
target recognition [1]. With the explosive development of radar technique and the occurrence of new 
radar systems, radar signals have become increasingly complex. Besides, parameters of radar signals 
represent varying combinations corresponding to diverse operating modes. Or even under the same 
operating mode, signal parameters are not fixed due to external noises [2]. All these make traditional 
processing dependent on single parameter or stepwise processing of different parameters unsuitable. 

Current joint multi-parameter processing algorithm is primarily composed of grey correlation analysis, 
fuzzy identification algorithm and evidence theory. Grey correlation analysis compares the gray value of 
to-be-processed signals with that of reference signals. Despite its simpleness, the algorithm is not perfect 
in accuracy until its input was subsequently improved and its accuracy reached 91%. Its parameter type 
is nevertheless restricted to interval [3-5]. Fuzzy identification algorithm replaces similarity measure with 
fuzzy membership as the basis, providing a mathematical method for events of uncertain recognition in 
radar signal processing. However, the results of multiple observations on the same target may be 
inconsistent or even contradictory in practice [6,7]. And the above two algorithms merely separately 
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process each radar signal, without fusion of signals drawn from different reconnaissance equipment in 
different times [8]. Evidence theory integrates all aspects of information of evidences to curtail 
information incompletion and impreciseness. Being accurate, this theory is at present massively applied 
in the fusion processing of radar signals. A contradiction between multiple input and high complexity 
however exists [9,10]. Current radar signal processing’ relying on the template library entails a new 
processing approach as the result is not steady enough when the quantity of signal data is large. 

A multi-level fusion processing algorithm for complex radar signals based on evidence theory is 
proposed therefrom. In this algorithm, a database is built by ourselves on the basis of to-be-processed 
radar signal data, and the corresponding decision rules are constructed and deduced. Then a reasonable 
similarity model which can reflect the similarity among parameters, describe the matching degree of 
multi-valued parameters and mark different signal modes of the same target, is established to extract 
similarity matrix. Next, radar signals are fused at parameter level with evidence theory and divided into 
multiple signal sets through correlation judgment. Evidence theory is subsequently applied to fuse the 
signal information of each signal set for validation. The simulation results manifest that effective 
integration of complex radar signals and corresponding classification and combination is possible by this 
algorithm, which makes radar signals more abundant and complete. 

 
 

2. Parameter Processing between Radar Signals 

In processing unknown radar targets, the specific types of radar parameters are summarized as single-
value type, multi-value type and interval type due to the scarcity of prior knowledge [11], to curb the 
influence of parameter type judgment errors caused by equipment performance and noise, making 
calculation of parameter similarity of each target easier and more effective. Different types of similarity 
models are discussed as follows: 

 

2.1 Similarity of Single-Value Parameter 
 

Given reference parameter A, to-be-measured parameter B, and , then the similarity can be 

defined as: 
 

,                                       (1) 

 

In which is the tolerance value of measured parameters, and its distribution is shown in Fig. 1. 
 

 
Fig. 1. Distribution of fixed value similarity. 
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2.2 Similarity of Multi-Value Parameter 
 

Template parameters are in ascending order, and to-be-processed parameters 

. Parameter deficiency due to various factors in practice makes . The similarity of 
multi-value parameter is thus explored from the following aspects: 

1. If , the similarity can be defined as 
 

,                                                                 (2) 

where  represents the Euclidean distance between template parameters and to-

be-processed parameters, represents system measuring error,  tolerance value of measuring 
parameters, and D coincidence degree between intervals. The calculation method is as follows: 
 

.                                      (3) 

  

For different signal modes of the same radar targets, the pulse repetition period (PRI) values are not 
within the tolerance, but multiples are strict. As shown in Table 1, radio frequency (RF) and pulse width 
(PW) are identical, but PRI and Eq. (2) are not, and the PRI value of signal mode 1 is 2.4 times than that 
of signal mode 2. d and d(A, B) shall thus be altered as follows: 

Given ; , then 
 

,                                                           (4) 

.                                      (5) 

 

Now add 11 to the similarity to obtain Eq. (6), marking possible different signal modes of the same 
target, as well as differentiating the matching degree of multi-value parameters below. 

 

.                                                              (6) 

 

Table 1. Different signal modes of the same target 
 RF (MHz)  PW (μs)  PRI (μs)  

Signal mode 1 890 1+65 3352, 1978, 2894, 2207 
Signal mode 2 890 1+65 1397, 750, 1206, 920 

 
2. If , the similarity is calculated as following: 

1) Determine corresponding matching points. Uncertainty of the position of parameter deficiency 
entails rough matching between parameters A and B. The match takes effect when . 
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2) Sequence well-matched parameter groups in ascending order as  and 

for calculation convenience. 

3) Calculate the similarity between and  in the same way with case 1. 

4) Mark the matching degree. If the matching coefficient is , then 

. As shown in Fig. 2, the obtained similarity reflects parameters’ matching 
degree and the similarity degree between parameter groups, bring convenience for future 
calculation. 

 

 
Fig. 2. Similarities after mark. 

 
2.3 Similarity of Interval Parameter 

 

Given template parameter Interval  and to-be-processed parameter Interval , the 
similarity can be defined as follows: 

 

                            (7) 

 

where L refers to the length of interval, and  the intersection of two intervals. 
 

2.4 Similarity Model Selection Principle 
 

In practice, the type of to-be-processed radar signal parameters and that of template radar are 
impossibly hard to be identical, resulting in similarity model selection problem. Here, similarity model 
selection principles (shown in Fig. 3) are presented as follows. 

As shown in Fig. 3, for single-value parameters and multi-value parameters, the value of minimum 
difference between multi-value and single value is selected with equipment and environment taken into 
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parameters, the similarity between the median-value of interval parameters and that of single-value 
parameters is calculated by virtue of single-value similarity model, avoiding the case where similarity 
cannot be calculated with only one detected interval value. For multi-value parameters and interval 
parameters, it’s simple and fast to take the interval between the maximum and the minimum of multi 
value, and similarity is obtained by interval similarity model. 

 

 
Fig. 3. Similarities model selection for inconsistent parameter types. 

 
 

3. D-S Evidence Theory 

D-S evidence theory is an effective way of processing imperfect information. By representing the 
identified target set with recognition framework U and defining the basic probability assignment function 
(BPAF) in U as m: → [0,1], it satisfies the following conditions: 
 

,                                                                   (8) 

 

where Proposition A, called focal element, is a non-empty subset of U, and m(A) reflects the reliability of 
A.  

 denote the BPAF of recognition framework U derived from n independent evidences, and 
then the BPAF of Proposition C under the interaction of n independent evidences is obtained by   D-S 
combination rule [6,12]. 

 

.                                        (9) 
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.                                                           (10) 
 

If Eq. (10) is satisfied, then target  and  are determined as the same target. Following comes proof 

of the decision rule. 
Eq. (11) denotes the similarity matrix among evidence sources, based on to-be-processed radar signals. 
 

.                                      (11) 

 

Providing that 1, 3, 5 are the same target data, the following results can be obtained in an ideal situation: 
 

.                                                              (12) 

 

The similarities between evidence sources are taken as the input according to D-S evidence theory 
combination rule (see Eq. (13)). 

.                                           (13) 

 

All the to-be-processed signals are fused for respective trust function value (m(1), m(2),···,m(n)), in 
which: 

.                                      (14) 

  .                               (15) 

.                             (16) 

 

Eq. (12) is substituted into Eq. (15) and Eq. (16): 
 

.                                         (17) 
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 .                        (18) 

 .                        (19) 

Then Eq. (10) is proved. 
 

. 
 

It’s therefore theoretically feasible to exercise fusion processing of to-be-processed signals with 
evidence theory. Except that the information from all sides are made into full use to curtail the impact of 
incompletion and accident caused by single evidence, this algorithm also solves the problem that D-S 
evidence theory fails to sort out irrelevant evidence [13]. 

 
 

4. Algorithm Description 

The overall processes of the proposed algorithm are shown in Fig. 4, and specific steps are as follows: 
1) Establish a template library based on to-be-processed radar target signals and describe parameter 

type numerically. The specific rule and arrangement order are presented respectively in Table 2 
and Fig. 5. Being clear and definite, numbers facilitate the algorithm design, avoiding wrong 
description of parameter type caused by lack of prior knowledge. 

2) Select corresponding similarity model on the basis of parameter type and calculate similarity 
matrix as shown in Fig. 4. 

3) Optimize the similarity. Mark the signal parameters of different modes and same target selected 
by similarity. Then adjust the similarity according to the matching degree of multi-value 
parameters to be closer to the description of actual signals. Optimization rule is shown in Table 3. 

 

 
Fig. 4. Similarity model selecting. 

 

 
Fig. 5. Parameter setting. 
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Table 2. Parameter type rule 
Parameter type Parameter value Type representation 

Fixation 1 

Multi-value 2 

Interval 3 

 
Table 3. Similarity optimization 

Similarity state State description Optimization method 
 ( is the PRI 

similarity between the evidence i and the 
target j). 

The radar targets may be the same 
and the signal patterns are 
different. 

Save i, j, and 

 

; is an 

arbitrary value ( represent RF, PW, 
PRI similarity randomly). 

Arbitrary two parameters of radar 
target are highly similar.  

 and  (
represent RF, PW, PRI similarity randomly).

The similarity between Radar target 
parameters is unstable. 

 

fix(·) represents the integral part. 
 

For same radar targets of different signal patterns, it can be derived from Eq. (6) that its 
similarity interval is (11,12], and the similarity input of evidence fusion is between interval (0,1], 
it is thus possible to optimize the similarity to interval (0,1], acquiring marks while reflecting the 
similarity degree of evidence signals and targets. In case similarity is affected by parameter 
deviation caused by inevitable factors such as errors while other parameters are not, if the 
extracted similarity satisfies  and , then the other similarity has to be restored 
to minimize the impact of matching degree on proper data; while if the extracted similarity 

satisfies  and  then it shows that radar signals share high uncertainty 
due to varying factors in practice. In this case, the similarity shall be optimized as Table 3 to be 
more realistic, dampening the effect of uncertainty. 

 

4) Respectively integrate the similarity of each radar target parameter in accordance with evidence 
fusion rule (Eq. (9)) to obtain the trust value of each evidence fusion parameter to target 
framework and determine their types. Relevant determination rules have been illustrated in 
Section 2. Uncertainty of evidence signals in practice renders alteration of proved rules (Eq. (20)) 
necessary. Despite the uncertainty of signals, and since the ith evidence shares the same signal with 
the ith target, is the maximum value. Compare other trust values of the same column with the 
maximum value, and set in accordance with signal processing accumulation. 

.                                                        (20) 
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is derived in the same way. 

                                                               (21) 

If Eq. (21) is satisfied, then target i, j, k, are classified into the same equivalent set. 
 

5) Perform signal-level fusion verification for each equivalent set obtained in Step 4 using the D-S 
evidence fusion rule (Eq. (9)). The verification rule is listed as follows. Given that equivalence set 

1 contains signals, and are as Eq. (22), and represents the trust value against target j 

upon fusion of the ith equivalence set signal, if then signal j is element of 

equivalence set i. This signal-level fusion processing takes signal fusion results as basis, depressing 
wrongful influence of signals caused by contingency or uncertainty. Signals belonging to 
equivalence set around average value are therefore extracted by value of the difference between the 
maximum and the mean. The feasibility of this verification rule has been proved with 500 Monte 
Carlo simulation experiments. 

                                                    (22) 

For further improvement in signal integrity, signals belonging to the same target (including the 
same signal of different patterns) are fused and parameters supplemented. 

 
 

5. Simulation Experiment 

5.1 Fusion Processing Simulation 
 

The fusion results of unknown radar signals detected by electronic warfare reconnaissance equipment 
would exert direct influence on further recognition. The sets of simulation experimental data are shown 
in Table 4, in which each target signal is depicted by RF, PRI and PW, tolerance value of each parameter 
is 15 MHz, 0.3 μs, and 3 μs, and measuring error 5 MHz, 0.1 μs, and 1 μs. Parameter type is composed of 
multi value, single value and interval type. In this simulation, cases of similar parameter, cross parameter, 
and same signal in different modes are all devised. 

A database is established according to Table 4 and corresponding similarity model is selected based on 
parameters types to calculate the similarity among radar signals, such as PRI similarity as shown in Table 
5. This similarity model can reflect the similarity degree among parameters and the matching degree 
among multi-value parameters, as well as same targets in different patterns. To take a case in point, 
= 11.79, then signal parameters follow strict relations as 2.24 times of each other. 

The similarity is optimized in accordance with Step 3. Then parameter similarity of evidences is fused 
according to Step 4 to obtain the trust value of each signal relative to the target framework as shown in 
Table 6. It can be observed from the table that D-S evidence is of substantial assistance in fusing the 
similarity of parameters to obtain the trust values of the target. And for the same target, its trust value is 
basically the same. As in Table 6, the trust values of signal 1 to target 4 and 5 are both 0.19. The simulation 
results are thus in line with the theoretical decision rules. 
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Table 4. Parameter of unprocessed radar signal 
Unprocessed radar signal RF PW PRI 

Signal 1 6615, 6620, 6780 45, 49, 68.8, 62.5, 86.4 20.5, 23.1 
Signal 2 6606, 6653, 6792 37.8, 28.8, 48.7, 55.7 27 
Signal 3 5321, 5678 35, 40, 45, 50 20, 27 
Signal 4 6615, 6620, 6780 45, 68.8, 62.5 20.9, 23.3 
Signal 5 6607.3–6787.2 44, 49, 68.8, 62.5 20.7, 23.3 
Signal 6 6607, 6658, 6801 37.8, 28.8, 86.4 27.2 
Signal 7 6606, 6658, 6798 64.7, 86.6, 103.5, 125.32 27.4 
Signal 8 5321 35, 40, 45 20, 27 
Signal 9 6601.8–6778.7 37.8, 28.8, 48.7, 55.7 27.7 
Signal 10 6607–6797.2 44, 49, 68.8, 86.4 20.6, 23.2 
Signal 11 5678 35, 40, 45 20, 27 

 

Table 5. The similarity between PRI parameters 
 Target 1 Target 2 Target 3 Target 4 Target 5 Target 6 Target 7 Target 8 Target 9 Target 10 Target 11 

Signal 1 1 0.53 5.69 11 10.89 0.75 5.48 0.75 0.53 10.09 0.75 
Signal 2 0.53 1 0.54 0.26 0.56 7.52 11.79 6.99 1 0.53 6.99 
Signal 3 5.69 0.54 1 0.75 1.57 0.43 0.00 11 0.51 0.48 11 
Signal 4 11 0.26 0.75 1 10.86 0.00 0.43 0.75 0.26 7.49 0.75 
Signal 5 10.89 0.56 1.57 10.86 1 0.00 0.32 0.59 0.53 1 0.59 
Signal 6 0.75 7.52 0.43 0.00 0.00 1 0.72 0.43 7.67 0.75 0.43 
Signal 7 5.48 11.79 0.00 0.43 0.32 0.72 1 0.00 11.79 11.48 0.00 
Signal 8 0.75 6.99 11 0.75 0.59 0.43 0.00 1 7.17 0.59 1 
Signal 9 0.53 1 0.51 0.26 0.53 7.67 11.79 7.17 1 0.56 6.93 

Signal 10 10.90 0.53 0.48 7.49 1 0.75 11.48 0.59 0.56 1 0.59 
Signal 11 0.75 6.99 11 0.75 0.59 0.43 0.00 1 6.93 0.59 1 

 

Table 6. The trust values of each parameter relative to the target framework 
 Target 1 Target 2 Target 3 Target 4 Target 5 Target 6 Target 7 Target 8 Target 9 Target 10 Target 11 

Signal 1 0.28 0.03 0.00 0.19 0.19 0.03 0.02 0.00 0.06 0.19 0.00 
Signal 2 0.05 0.24 0.00 0.04 0.09 0.14 0.17 0.00 0.18 0.09 0.00 
Signal 3 0.09 0.07 0.19 0.06 0.04 0.06 0.02 0.19 0.05 0.04 0.19 
Signal 4 0.21 0.01 0.00 0.34 0.23 0.01 0.02 0.00 0.03 0.15 0.00 
Signal 5 0.17 0.04 0.00 0.19 0.27 0.02 0.04 0.00 0.04 0.22 0.00 
Signal 6 0.05 0.14 0.00 0.02 0.05 0.26 0.19 0.00 0.18 0.11 0.00 
Signal 7 0.03 0.18 0.00 0.03 0.04 0.18 0.28 0.00 0.19 0.07 0.00 
Signal 8 0.00 0.00 0.39 0.00 0.00 0.00 0.00 0.39 0.00 0.00 0.20 
Signal 9 0.06 0.17 0.00 0.05 0.07 0.17 0.17 0.00 0.24 0.06 0.00 

Signal 10 0.19 0.05 0.00 0.12 0.22 0.06 0.05 0.00 0.05 0.27 0.00 
Signal 11 0.07 0.12 0.21 0.06 0.05 0.06 0.02 0.12 0.03 0.06 0.21 

Tag: The signal 2 and 7, 7 and 9, 7 and 10 may be the same target in different signal mode. 
 
Given preceding signal ε = 0.1, each column is determined and classified according to Eqs. (20) and 

(21). Targets within threshold are extracted as shown in Fig. 6 and the results in Fig. 7. It is clear that 
radar signals are roughly separated, yet signal overlapping still exists. Signal 2, for instance, appears in 
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both set 2 and 3 simultaneously (Table 7). The reason lies in that in this step fusion is performed at the 
level of signal parameter, which can only distinguish the similarity between each independent to-be-
processed signal and the target signal. The processing result is considerably affected by signal data quality, 
and data processing results with contingency and uncertainty are error-prone. Here thus comes the next 
step: fuse signals from each signal set, curbing the effects exerted by data contingency and uncertainty. 

 

Fig. 6. Algorithm flow. 
 

 
Fig. 7. Decision process. 

 
Table 7. Classification result 

 Target value 
Signal set 1 1, 4, 5, 10 
Signal set 2 2, 6, 7, 9 
Signal set 3 3, 8, 11, 2 

Tag: The signal 2 and 7, 7 and 9 may be the same target in different signal mode. 

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Target

Tr
us

t v
al

ue
s 

of
 s

ig
na

l r
el

at
iv

e 
to

 th
e 

ta
rg

et
 fr

am
ew

or
k



Multi-Level Fusion Processing Algorithm for Complex Radar Signals Based on Evidence Theory 

 

1254 | J Inf Process Syst, Vol.15, No.5, pp.1243~1257, October 2019 

Fusion verification is exercised to each signal set according to Step 5 and the results are shown in Table 
8. It can be seen that for the same signal, the trust value changes upon fusion, fluctuating within the range 
of 0.1. This is related to the effects of reconnaissance environment and equipment, i.e. even for the same 
target signal, precision and accuracy of signal parameters are different due to disparate devices [14]. The 
result is however in accord with theoretical decision rules. 

 
Table 8. Trust value of multi-signal fusion 

 Trust value
Set 1 Target 1 (0.24), Target 4 (0.21), Target 5 (0.29), Target 10 (0.26) 

Set 2 Target 2 (0.22), Target 7 (0.26), Target 9 (0.27), Target 6 (0.25) 

Set 3 Target 3 (0.45), Target 8 (0.32), Target 11 (0.23), Target 2 (0.00) 

 
Through multi-signal fusion, the signal set obtained in Step 4 can be verified by making full use of each 

signal data, combining signals with each other to determine target frame. Misclassified signals influenced 
by accident and noise are eliminated to realize the processing of complex radar signals with multiple-type 
parameters. Finally, signals belonging to the same target are merged to be more complete. To take a case 
in point, through multi-signal fusion of trust value, target 2 are properly eradicated from signal set 3 and 
classified into signal set 2 as shown in Table 9. 

 

Table 9. Fusion result 
 RF (Hz) PW (μs) PRI (μs) Radar signal 

Radar 1 6607–6697 45, 49, 68.8, 62.5, 86.4 20.7, 23.2 1, 4, 5, 10 
Radar 2 6601.8–6778.7 28.8, 37.2, 48.7, 55.7 /

64.7, 86.6, 103.5, 125.32 
27.4 2, 6, 7, 9 

Radar 3 5321, 5678 35, 40, 45, 50 20, 27 3, 8, 11 

 
The algorithm can correctly realize the fusion processing of unknown complex radar signals, which is 

effectively deal with the limit that the existing algorithms cannot accurately realize fusion processing 
without database. 

 
5.2 Analysis of Algorithm Performance 

 

In consideration of the purpose of radar signal fusion processing algorithm, effective parameters of 
fusion processing will be defined to evaluate the performance of the algorithm. Effective parameter is 
defined as follows: 

 

,                                                                  (23) 
 

In which N represents the total quantity of radar signal implemented in fusion processing, and  the 
quantity of correct results obtained in algorithm processing. 

 

1) The impact of radar signal amount on effective parameters 
Fifty radar target signals are selected, and 2, 5, 8, 11, 14, 17, 20, 23, 26 samples from each target signal 

are extracted to form 9 signal processing data sets. Each data set is processed with the proposed algorithm, 
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fuzzy recognition algorithm and interval grey relation algorithm, then effective rate and processing time 
are counted. Experimental data are randomly altered and the simulation is repeated for 100 times, then 
the mean value of processing efficiency and time are calculated. The results are shown in Figs. 8 and 9. 

 

 
Fig. 8. Efficiency change along with the quantity. 
 

 
Fig. 9. Relations between total number of radar signals and time. 

 
As shown in Fig. 8, when the samples are small in amount, the effective rate of this algorithm is about 

0.25 lower than the other two algorithms, as the interval grey relation algorithm and fuzzy recognition 
algorithm’s separate processing of radar signals will drive processing efficiency high. However, once the 
amount of samples increases, the effective rate of the proposed algorithm will increase and stabilize 
eventually, fluctuating around 0.93. It can be further verified that the proposed algorithm can process 
unknown signals by full signal integration, and maintain stable high efficiency under large sample data. 
While the other two algorithms are restricted to the comparison between single independent signals and 
target frame, without integration of signals. Under such circumstances, increased sample results in 
decreased and unstable efficiency. The proposed algorithm can exert favorable effect on the fusion of 
unknown complex radar signals, with higher efficiency, and maintaining stable processing even of 
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considerable samples, which is what other two algorithms cannot get. 
As shown in Fig. 9, the proposed algorithm is the most time-consuming due to the application of D-S 

evidence theory, thus the most complex than the other two algorithms. Yet adopting multi-level 
processing approach, this algorithm implements fusion decision on signal parameters at first, and then 
perform verification by fusing signals according to the decision, reducing exponentially growing 
calculating complexity, i.e., the contradiction between multiple input and high complexity [15]. 

Therefore, when the sample number reaches 100, the time consumed is nearly equal to that of the other 
two methods. And when the sample number is up to 1,300, the time consumed in this algorithm is only 
27.54% more than that of grey relation algorithm, and 37.71% of fuzzy recognition algorithm. Time 
difference has narrowed. 

 
 

6. Conclusion 

The D-S evidence theory algorithm based on similarity can be of substantial assistance in fusion 
processing of unknown radar signals. A database concerning to-be-processed signals is initially 
established in real time to break the limitations of the lack of database, and the corresponding decision 
rules are constructed and deduced; then establish reasonable similarity model to obtain the similarity 
matrix, finally multi-parameter fusion processing and multi-signal fusion processing is performed 
successively through the agency of D-S evidence theory. It can be concluded from simulation experiment 
that the proposed algorithm is expert in processing unknown radar signals lacking template library, and 
maintaining a stable processing rate with considerable samples and less time consumed. Fusion 
processing renders radar signals more complete and abundant, decreasing the redundancy of radar signal 
and laying foundation for further signal recognition, which can effectively reduce the storage equipment’s 
consumption. 

This algorithm supports fusion processing with conventional parameters such as radio frequency, pulse 
width and repetition period provided. The ever-developing intra-pulse analysis technique in time 
frequency domain brings accuracy and reliability in the extraction of intra-pulse parameter, constituting 
a powerful evidence in signal processing. Future research on recognition of radar signal targets will take 
intra-pulse parameters into account, enhancing accuracy while maintaining effective and stable 
processing with large sample data. 
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