• Title/Summary/Keyword: Influence curve

Search Result 652, Processing Time 0.024 seconds

Axial compression performance of basalt-fiber-reinforced recycled-concrete-filled square steel tubular stub column

  • Zhang, Xianggang;Gao, Xiang;Wang, Xingguo;Meng, Ercong;Wang, Fang
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.559-571
    • /
    • 2020
  • This study aimed to inspect the axial compression mechanical performance of basalt-fiber-reinforced recycled - concrete (BFRRC)-filled square steel tubular stub column. The replacement ratio of recycled coarse aggregate (RCA) and the basalt fiber (BF) dosage were used as variation parameters, and the axial compression performance tests of 15 BFRRC-filled square steel tubular stub column specimens were conducted. The failure mode and the load-displacement/strain curve of the specimen were measured. The working process of the BFRRC-filled square steel tubular stub column was divided into three stages, namely, elastic-elastoplasticity, sudden drawdown, and plasticity. The influence of the design parameters on the peak bearing capacity, energy dissipation performance, and other axial compression performance indexes was discussed. A mathematical model of segmental stiffness degradation was proposed on the basis of the degradation law of combined secant-stiffness under axial compression. The full-process curve equation of axial compressive stress-strain was proposed by introducing the influencing factors, including the RCA replacement ratio and the BF dosage, and the calculated curve agreed well with the test-measured curve.

Numerical Analysis of the Effects of Stress Anisotropy and Tunnel Excavation Shape on Initial Elastic-wall Displacement (지반응력의 비등방성에 따른 터널측벽의 초기탄성변위 특성에 대한 수치해석적 연구)

  • 김상환;정혁일
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.6
    • /
    • pp.33-42
    • /
    • 2002
  • Ground reaction curve is a very important information for evaluating the side wall displacements and installation time of the tunnle support. The ground reaction curve can be estimated by analytical closed form solutions derived on the supposition of circular section and isotropic stress condition. The conditions of stress field and tunnel configurations, however, are quite different in practice. Therefore, it is necessary to investigate the effects of stress anisotropy and tunnel configurations in order to use simply in practical design. This paper describes a study of influence factors in the ground reaction curve. In order to evaluate the applicability of analytical closed form solution in practical design, two sets of parametric studies were carried out by numerical analysis in elastic tunnel behaviour: one set of studies investigated the influence of the K and the other set investigated the influence of the tunnel configurations such as circular and horse-shoe shape. In the studies, K value varies between 0.5 and 3.0, initial ground vertical stress varies between 5~30MPa far each K values. The results indicated that the self-supportability of ground is larger in the ground having lower K value. However, it is suggested that the applicability of closed form solution may not be adequate to determine directly the installation time of the support and self-supportability of ground. It is necessary to consider stress anisotropy and tunnel configurations.

Verification of Frequency-Dependent Equivalent Linear Method (주파수 의존성을 고려한 등가선형해석기법의 검증)

  • Jeong, Chang-Gyun;Kwak, Dong-Yeop;Park, Du-Hee
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.113-120
    • /
    • 2008
  • One-dimensional site response analysis is widely used to simulate the seismic site effects. The equivalent linear analysis, which is the most widely used type of site response analysis, is essentially a linear method. The method applies constant shear modulus and damping throughout the frequency range of the input motion, ignoring the dependence of the soil response on the loading frequency. A new type of equivalent linear analysis method that can simulate the frequency dependence of the soil behavior via frequency-strain curve was developed. Various forms of frequency-strain curves were proposed, and all curves were asserted to increase the accuracy of the solution. However, its validity has not been extensively proven and the effect of the shape of the frequency-strain curve is not known. This paper used two previously proposed frequency-strain curves and three additional curves developed in this study to evaluate the accuracy of the frequency-dependent equivalent linear method and the influence of the shape of the frequency-strain curves. In the evaluation, six recordings from three case histories were used. The results of the case study indicated that the shape of the frequency-strain curve has a dominant influence on the calculated response, and that the frequency dependent analysis can enhance the accuracy of the solution. However, a curve that results in the best match for all case histories did not exist and the optimum curve varied for each case. Since the optimum frequency-strain curve can not be defined, it is recommended that a suite of curves be used in the analysis.

Errors in Recorded Information and Calibration of a Catchment Modelling System(II) - Monitoring Calibration Approach - (기록치 오차와 유역모형의 검정(II) - 모니터링 검정방법 -)

  • Choi, Kyung Sook
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.5
    • /
    • pp.117-125
    • /
    • 2003
  • Since the recorded information used for operation of a catchment modelling system contain errors that influence the calibration of catchment modelling system control parameter values, the accurate estimation of these parameters is difficult. Despite these influences, existing traditional calibration approaches focus only on achieving the best "curve fitting" between simulated and recorded data, and not on generic evaluation of control parameter values. This paper introduces an Early Stopping Technique which is aimed at avoiding the procedure of curve-fitting through monitoring improvements in the objective function used for assessing the optimal parameter set. Application of this approach to the calibration of SWMM (Storm Water Management Model) on the Centennial Park catchment in Sydney, Australia is outlined. outlined.

Determination of the mechanical properties of the coated layer in the sheet metal using load-displacement curve by nanoindentation technique (나노 인덴테이션의 하중-변위 곡선을 이용한 표면처리강판 코팅층의 기계적 특성 결정)

  • Ko Y. H.;Lee J. M.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.148-151
    • /
    • 2004
  • Mechanical properties such as Young's modulus and hardness of thin film in coated steel are difficult to determine by nano-indentation from the conventional analysis using the load-displacement curve. Therefore, an analysis of the nano-indentation loading curve was used to determine the Young's modulus, hardness and strain hardening exponent. A new method is recently being developed for plasticity properties of materials from nano-indentation. Elastic modulus of the thin films shows relatively small influence whereas yield strength and strain hardening are found to have significant effect on measured data. The load-displacement behavior of material tested with a Berkovich indenter and nano-indentation continuous stiffness method is used to measure the modulus and hardness through thin films.

  • PDF

Trajectories of Change in Internalizing and Externalizing Problems in Adolescence:Latent Growth Curve Modeling (청소년의 내면화와 외현화 문제행동의 발달궤적:재성장모형을 중심으로)

  • Lee, Ju-Rhee
    • Journal of Families and Better Life
    • /
    • v.26 no.5
    • /
    • pp.51-60
    • /
    • 2008
  • This study examined the influence of attachment to parents, parents' monitoring, and deviant peers on trajectories of internalizing and externalizing problems in adolescence. Participants were 2528(1251 male and 1277 female) adolescent from the 2004(age:16 of latent growth curve modeling indicated that (1) Individual differences of internalizing and externalizing problems' nitial levels and changes were significant. (2) Attachment to parents influenced both initial levels and changes of internalizing problems. (3) Attachment to parents and parents' monitoring influenced initial levels of externalizing problems, and deviant peers influenced both initial levels and changes of externalizing problems.

Analysis of the Influence of the Address Electrode Width on High-speed Addressing Using the Vt Close Curve and Dynamic Vdata Margin

  • Kim, Yong-Duk;Park, Se-Kwang
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.5
    • /
    • pp.183-190
    • /
    • 2005
  • In order to drive the high-density plasma displays, a high-speed driving technology must be researched. In this experiment, the relationship between the width of the address electrode and high-speed driving is analyzed using the Vt close curve and the panel structure for high-speed driving is proposed. In addition we show that the wider the width of the address electrode is, the narrower the width of the scan pulse becomes. Therefore, we could achieve the minimum data voltage of 50.1V at a scan pulse width of $1.0/{\mu}s$ and a ramp voltage of 210V at an address electrode width of $180/{\mu}m$ for the high-speed driving 4-inch test PDP.

Determination of the Mechanical Properties of the Coated Layer in the Sheet Metal Using Load-Displacement Curve by Nanoindentation Technique (나노 인덴테이션의 하중-변위 곡선을 이용한 용융아연도금 강판 코팅층의 기계적 특성 결정)

  • Ko Y. H;Lee J. M;Kim B. M
    • Transactions of Materials Processing
    • /
    • v.13 no.8
    • /
    • pp.731-737
    • /
    • 2004
  • Mechanical properties such as Young's modulus and hardness of thin film in coated steel are difficult to determine by nano-indentation from the conventional analysis using the load-displacement curve. Therefore, an analysis of the nano-indentation loading-unloading curve was used to determine the Young's modulus, hardness. A new method is recently being developed for elastic-plastic properties of materials from nano-indentation. Elastic modulus of the thin films shows relatively small influence whereas yield strength is found to have significant effect on measured data. The load-displacement curves of material tested with a Berkovich indenter and nano-indentation continuous stiffness method is used to measure the modulus and hardness through thin films, and then these are computed using the analysis procedure. The developed neural networks apply also to obtain reliable mechanical properties.

The diameter and base curve changes of soft contact Lens by protein deposition (단백질 침착에 의한 소프트콘택트렌즈의 직경 및 곡률반경 변화)

  • Park, Mi-Jung;Cho, Gyu-Tae;Shin, Sung-Hwan;Lee, Heum-Sook;Kim, Dae-Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.10 no.3
    • /
    • pp.165-171
    • /
    • 2005
  • The aim of the study was to investigate the diameter and base curve changes of soft contact lens by protein deposition. Soft contact lenses were soaked in artificial tear or protein solution which had the same composition with tear for 2min, 10min, 30min, 1hr, 3hr, 6hr, 12hr, and 24hr. Diameter and base curve changes of soft contact lenses were examined by using the high speed camera(Fastcam ultima 1024). The longer the soaking time of soft contact lenses in the artificial tear, the diameter and base curve changes of soft contact lenses was more increased. In the case of soft contact lenses adsorbed only protein, the similar pattern was shown and the diameter and base curve were decreased. However, the influence of calcium ion was found to be less than that of protein. These results suggest that the tear protein causes the diameter and base curve decrease of soft contact lens, which might be related to the discomfort after soft contact lens wearing.

  • PDF

Study on Adsoption Characteristics of Tharonil on Activated Carbon Fixed Bed (활성탄 고정층에 대한 Tharonil의 흡착특성에 관한 연구)

  • Lee, Jong-Jip;Yu, Yong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.1
    • /
    • pp.54-60
    • /
    • 2002
  • To obtain the breakthrough characteristics for the design of fixed bed adsorption plant, adsorption experiment on granular activated carbon was performed with tharonil in the fixed bed. The pore diffusivity and surface diffusivity of tharonil estimated by the concentration-time curve and adsorption isotherm were $D_s=2.825{\times}10^{-9}cm^2/s,\;D_p=1.26{\times}10^{-5}cm^2/s$, respectively. From comparison of the pore diffusivity and surface diffusivity, it was found that surface diffusion was controlling step for intrapaticle diffusion. The breakthrough curve predicted by constant pattern-linear driving force model were shown to agree with the experimental results. The surface diffusivity and film mass transfer coefficient had no effect on the theoretical breakthrough curve but the adsorption isotherm had fairly influence on it. Appearance time of breakthrough curve is faster with the increase flow rate and inflow concentration of liquid. The utility of granular activated carbon is enhanced with the increase of bed height and with the decrease of inflow rate.