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Abstract

Since the recorded information used for operation of a catchment modelling system contain errors that
influence the calibration of catchment modelling system control parameter values, the accurate estimation of
these parameters is difficult. Despite these influences, existing traditional calibration approaches focus only
on achieving the best "curve fitting” between simulated and recorded data, and not on generic evaluation of
control parameter values. This paper introduces an Early Stopping Technique which is aimed at avoiding the
procedure of curve-fitting through monitoring improvements in the objective function used for assessing the
optimal parameter set. Application of this approach to the calibration of SWMM (Storm Water Management
Model) on the Centennial Park catchment in Sydney, Australia is outlined.
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1. Introduction

Calibration of a catchment modelling system is
the process whereby the values of the control
parameters for the models are selected so that
the predicted catchment response to a storm
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event, or sequence of events, adequately re—
produces recorded catchment response. These
control parameters form part of the input data for
operation of the catchment modelling system.
Currently, two basic approaches used for
evaluating control parameters when a gauged
catchment is modelled are the trial and error
approach, and the automatic calibration approach.
The trial and error adjustment is made by visual
comparison between the simulated and observed
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values or hydrographs until the match has
improved to an acceptable accuracy, while
automatic calibration uses a search engine such
as an optimisation algorithm to minimise a
function value which represents an objective
measure of accuracy. The traditional calibration
approaches, therefore, whether it is a trial—
and—error technique or an optimisation tech—
nique, consist of modifying parameter values until
satisfactory accuracy in the simulation is
achieved.

Recorded data used for calibration usually
contain errors (Pilgrim, 1975; Desbordes, 1981;
Williams and Yeh, 1983). The disturbance of
errors within the calibration data significantly
influences estimation of control parameters.
During the calibration process, therefore, it is
very important that this influence is recognised
and incorporated into the process so that un—
biased estimates of the parameters can be
obtained and, where appropriate, physically
meaningful values obtained. With this situation,
the calibration process should not proceed
further only for the purpose of minimising the
error. Existing or traditional calibration appro—
aches, however, focus most on achieving the best
"curve fitting" between simulated and monitored
data, and not on generic evaluation of control
parameter values. The parameter values esti—
mated might be the best results for the calibration
events but might not truly be optimised because
they are derived from a curve fitting process.
Refsgaard and Storm (1996) also noted that a
good match through the curve fitting process
does not necessarily guarantee the reliability of
estimated parameter values. The final control
parameter values selected in calibration, which

118

have been assumed to be the optimum parameter
set, might not be the best set but rather a poor
set for wvalidation events and subsequent
application event simulations. The problem,
therefore, is to find the stop point for the
calibration process in order to attain meaningful
parameter values and not to attain a curve fitting
result.

The approach proposed in this paper is based
on monitoring the calibration process and
thereby avoiding the effects of errors within the
calibration data, and hence reducing the potential
for curve fitting of the calibration data set. An
Early Stopping Technique was employed for this
purpose.

II. Methodology
1. Early Stopping Technique (EST)

The Early Stopping Technique consists of
three data sets: (1) calibration data, (2) moni—
toring data, and (3) validation data. The calib—
ration data is used to minimise deviations
between simulated and measured values through
the optimisation process. The monitoring data is
used to check the progress of the calibration
process and to decide which point should be
taken as the stopping point for the calibration.
The validation data is used for final evaluation of
parameter set selected from this point. The
concept of this early stopping technique is
illustrated in Fig. 1.

Typical error curves of monitoring data and
calibration data are shown in this figure. At the
beginning of optimisation process, some of the
parameters are adjusted to minimise the error
between calibration target and simulation output.
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Early Stopping Technique
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Fig. 1 Early stopping technique

As optimisation progresses, the values of
parameters are getting closer to optimum values
and, hence, the error in both calibration and
monitoring data set will gradually decrease. As
optimisation progresses further and beyond a
certain point, the calibration process starts to fit
the noise of the calibration data, and the process
becomes one of curve fitting. Consequently, a
further decrease in the calibration error occurs
but an increase in the monitoring error is
observed. When the monitoring data error,
therefore, reaches a minimum value, the para—
meter set at this point is considered optimised
although calibration data error can still decrease.
It is at this point where the parameter values
reflect the physical processes and avoid the
curve fitting process. The control parameter set
obtained at this early stopping point is therefore
selected as most representative of the true
catchment values, and this is then confirmed by
the validation data, an independent data set.

2. Application of EST

The Centennial Park catchment, was selected
for the case study. This catchment is also
referred to as the Musgrave Avenue Stormwater
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Channel catchment, and is located in the eastern
suburbs of Sydney, Australia. The characteri—
stics of the catchment are described in Choi
(2003). Spatial information about the catchment
was constructed in a GIS database in order to
achieve high resolution of spatial variability, and
to attain accurate initial estimation of control
parameters.

Temporal information within the catchment
was available in HYDSYS which is a computer
system used to store, process, analyse and
report hydrometric time series database. For the
application of EST, rainfall and flow information
were extracted from HYDSYS in the form of
instantaneous value at the end of a time interval.
Both single and multiple peak events were
selected with data available at a time step of 5
minutes. Three events for calibration and
monitoring processes respectively and four
events for validation process were used to
implement this approach. The details of these

Table 1 Details of events

Rainfall| Runoff Peak flow
(mm) | (m%) | (m%s)
Calibration events

Nov. 04, 94 4.0 | 18861 0.349 Dry
Nov. 29, 94| 40 | 12036 0.332 Dry
Jan. 28, 95 | 8.0 | 30747 0.896 Dry

Monitoring events

Oct. 21, 94| 82 | 30474 0.726 Dry
Oct. 31, 94| 58 1764.3 0.547 Dry
Jan. 02,95 | 78 786.0 0512 | Rather Dry

Events AMC

Validation events

Nov. 01, 94| 738 2535.6 1.852 Dry
Dec. 22, 94 | 4.2 16959 1413 Dry
Jan. 04, 95| 86 3198.0 1.529 Wet
Feb, 28, 95§ 96 3451.2 2.634 Dry
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events are shown in Table 1,

The antecedent wetness of the catchment was
categorised based on the total amount of rainfall
within the proceeding 24 hours, which was
adapted from Abustan (1997).

An investigation was performed to find an
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actual stopping point for a calibration process,
and hence to find the location of the minimum
function values for the validation events through
monitoring process. When the minimum function
value is obtained at initial iteration as shown in
Fig. 2, this point was considered as Starting Point
(SP). When the monitoring data error reaches a
minimum function value in the middle of the
process, this point was considered as Early
Stopping Point (ESP). An example of ESP is
shown in Fig. 3. Meanwhile, the minimum function
value can also be obtained from Ending Point
(EP) as shown in Fig. 4. Based on these three
points, the investigation was performed by using
eight models which were developed with
different model complexity and structure within
SWMM based on the later approach described in
Choi and Ball (2002).

The selected criterion for function evaluations
in this study was peak flow objective function
shown in Equation (1). The reason of choosing
this criteria is that the error in peak flow is
considerable and highly variable, and hence, this
error can be more easily monitored through EST.

Absolute Relative Error (ARE) of Peak Flow

ARE LA

peak _ flow =

where P.: is observed peak flow (m’/s)
P,: is simulated peak flow (m®/s)

The calibration was performed by minimising
the summation of errors for individual events (ie.
2z, where, ¢ is an individual event) instead of
minimising the error of each calibration event
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separately. As mentioned in the previous section,
the monitoring of the calibration process was
performed using the control parameter values
obtained from each iteration of the calibration
process, and then this monitoring information
used for validation events to check feasibility of
EST for finding right stopping point of the
calibration process. The L_BFGS_B (limited
memory quasi—Newton algorithm) was emp-
loyed to assist in the calibration process.

Il. Results and Discussion

Presented in Table 2 are the calibration results.
Since the function values of the calibration
subject to decrease until EP, and hence there is
no ESP within this process as shown in Fig. 4,
only the function values at SP and EP were
illustrated in Table 2. Each model showed a
different function value as well as a different
number of function evaluations depending on
number of model parameters and model structure
although the original concept of the models are
the same. A detailed discussion of the influence

Table 2 Calibration results

No. of SP EP
Model | Calibrated | Function | No of | Function

parameter | value | jteration | value
A 61 0.211 3721 0.180
B 20 0.211 900 0.052
C 55 0.241 6030 0.058
D 55 0.284 6270 0128
E e 0.241 1526 0.097
F 14 0.284 1064 0.103
G 49 0.261 7252 0.042
H 8 0.261 664 0.067

of model complexity and structure on the

calibration process can be found in Choi (2003).
From monitoring of the calibration process, it

was observed that there are several patterns to

the monitoring data sets. The first pattern is that
an obvious ESP is shown in the monitoring data.

As mentioned earlier, this point is the location

containing the optimal calibration parameter sets.

After this point, the parameter values are not

meaningful as these values are affected by the

process reducing errors in the calibration data.

The parameter sets obtained from this point is,

therefore, used to validate the modelling system.

In the second pattern, the monitoring data does
not show clear ESP due to insensitivity of the
response between monitoring data and control
parameter sets achieved from the calibration
process. This case demonstrates an instability in
the calibration/monitoring process. It is sus—
pected that this instability is due to one or more
of the following

* Errors in the control parameters not con—
sidered part of the calibration / monitoring
process (e.g. rainfall).

*Errors in the transformation within the
catchment modelling system (e.g. the non—
linear reservoir technique used within SWMM
for simulating surface runoff).

» Brrors in the monitoring data.

In the third pattern, several ESPs may be
observed because of the different characteristics
of the monitoring events. In other words, various
shapes of function value lines may be shown
depending on the characteristics of errors within
the monitoring data. The first ESP was con—
sidered as the location of minimum function value
in this case. Similar comments to the second case
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Fig. 5 Objective function value curves for the ca-
libration and monitoring processes of Model B

Table 3 Location of the minimum values for the
monitoring events

Monitoring 1 | Monitoring 1I | Monitoring I
(21/10/94) (31/10/94) (2/1/95)
No of | Func, | No of | Func. | No of { Func.
iterat, | value | iterat. { value | iterat. | value
1** | 0306 | 671 | 0267 | 671 | 0.325
60 | 0235| 80 | 0182 | 900* | 0.234
110 02031 110 | 0118 | 110 | 0.183
4015 | 0290 | 220 | 0.258 | 4015 | 0.326
770 | 0240 | 1526* | 0.184 | 420 | 0.200
1064* | 0258 | 42 | 0172 | 1064* | 0.249
2156 | 0.185 | 2009 | 0.105 | 2156 | 0.132
128 | 0220} 128 | 0142 | 128 | 0.206

*EP:** SP

Model

IO M@mim|g(O|mi

regarding the source of this instability are valid.

An example of the function value curves from
the calibration and monitoring processes of
model B are presented in Fig. 5, and the location
of the minimum function values of the eight
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models for the three monitoring events are
shown in Table 3.

As can be seen in this table, each monitoring
event showed a different location of the minimum
function value for the same models. Four out of
a total of 24 cases (i.e., eight modelsXthree
monitoring events) had the minimum function
values at EP and one case at SP. Most cases,
therefore, showed the minimum function values
at ESP. Although the locations of the ESP varied
from the three monitoring events, these locations
were not necessarily correlated with model
complexity or structure while the iteration
numbers of the calibration most likely depends
on model complexity as the complex models
usually showed higher number of iterations
during the calibration process.

Using the monitoring information shown in
Table 3, the validation was performed with four
events. Five control parameter sets for each
model, representing SP, three ESPs and EP were
selected for this validation to test stability of the
monitoring information. The results are sum-—
marised in Appendix A. The bold numbers in this
Appendix present the minimum function values
of the models. It was observed that optimal
parameter sets could be located at an ESP, SP
or EP. As shown in this Appendix, however, most
cases produced the minimum function values at
an ESP rather than at EP or SP.

The results also showed that more monitoring
data gives more reliable indications of stopping
points because of the higher possibility of finding
true ESP. Among 32 cases of the validation
results, 6 cases (i.e., the shaded line) showed
identical results from three ESPs while the rest
produced different function values from each
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ESP. It can be assumed that these 6 cases have
more reliable monitoring information indicating
where the calibration process should stop to
obtain optimal parameter sets. It can also be
concluded that the more identical ESPs the
calibration process has, the more reliable
validation results can be achieved.

The performances of three monitoring data for
finding the location of the minimum function value
in the validation process are shown in Fig. 6.
Different performances of monitoring data for
validation process were observed.

As shown in this figure, the monitoring data I,
i.e., the event on Oct. 31, 1994, showed overall
better performance in detecting the location
where the actual minimum function value can be
obtained. This suggests that this monitoring data
gave more accurate information to the validation
process. However, it also can be noticed that if
different validation events were selected, the
accuracy of monitoring information could vary
due to different noise situations in the selected
validation events.

In addition, as mentioned earlier, the behaviour
of each set of monitoring data was highly variable
depending on characteristics of events used, and
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Table 4 Occurrence rate of the minimum function
value for each point for the validation

events
Event SP ESP EP
Nov. 01, 94 0% 87.5% 12.5%
Dec. 22, 94 0% 87.5% 12.5%
Jan, 04, 95 0% 87.5% 12.5%
Feb, 28, 95 25% 62.5% 12.5%
Mean 6.25% 81.25% 125%

hence this variety directly influenced the vali—
dation process. The ESP point could, therefore,
have happened at any point, and this explains
why unique optimum control parameters from
different events cannot be achieved no matter
how powerful the optimisation algorithms used
for Calibration.

The occurrence rate of the minimum function
values for the three points was calculated based
on Appendix A, and presented in Table 4.

The control parameter sets at ESP produced
the minimum function values for validation events
in 81.25% of cases, while SP and EP rarely
produced the minimum function values. This fact
highlights the invalidity of using a control
parameter set obtained from the EP for the
validation process, which is a common approach.
The feasibility of EST for finding a right stopping
point for the calibration process was also proved
from these resuits,

IV. Conclusions

The proposed approach attempted to avoid the
problem of curve fitting through learning the
noise associated with the calibration events by
adoption of an Early Stopping Technique and,
hence, attempted to achieve a true optimal
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control parameter set. The important finding of
this study was that EP was not the definite
location of the minimum function value for the
monitoring and validation events; rather, ESP
was the dominant location of the minimum
function values, where the effects of errors
within the calibration data are minimised, and
hence optimal parameter values can be obtained.
This study also provided evidence of difficuities
for finding global optimum values of control
parameters through the EST approach.
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Appendix A
Validation Results
Validation 1 (Event 1/11/94)
SP ESP 1 ESP 2 ESP 3 EP
A 0.358 0.358** 0.344 0.344 0.347
B 0.358 0.290 0.304 0.291* 0.291
C 0.367 0.290 0.290 0.290 0.278
D 0.350 0.336 0.335 0.336 0.337
E 0.367 0.304 0,327* 0.330 0327
F 0.350 (.299* 0.296 0.299* 0.299
G 0.359 0.297 0.277 0.297 0.299
H 0.359 0.287 0.287 0.287 0.301
Validation 2 (Event 22/12/94)
SP ESP 1 ESP 2 ESP 3 EP
A 0.337 0.337** 0.291 0.291 0.302
B 0.337 0.274 0.249 0.260* 0.260
C 0.319 0.233 0.233 0.233 0,250
D 0.302 0.278 0.320 0.278 0.287
E 0.319 0.254 0.252* 0.252* 0.252
F 0.302 0.287* 0.277 0.287* 0.287
G 0.308 0.260 0.250 0.260 0.277
H 0.308 0.242 0.242 0.242 0.242
Validation 3 (Event 4/1/95)
SpP ESP 1 ESP 2 ESP 3 EP
A 0.271 0.271** 0.269 0.269 0.274
B 0.271 0.213 0.180 0.181* 0.181
C 0.275 0.201 0.201 0.201 0.207
D 0.252 0.236 0.216 0.236 0.239
E 0.275 0.181 0.181* 0.180 0.181
F 0.252 0.210* 0.216 0.210* 0.210
G 0.252 0.180 0.161 0.180 0.181
H 0.252 0.164 0.164 0.164 0.188
Validation 4 ( Event 28/2/95)
SP ESP 1 ESP 2 ESP 3 EP
A 0.270 0.270** 0.294 0.294 0.295
B 0.270 0.241 0.248 0.300* 0.300
C 0.298 0.239 0.239 0.239 0.242
D 0.264 0.268 0.269 0.268 0.278
E 0.298 0.238 0.239* 0.225 0.239
F (.264 0.278* 0.236 0.278* 0.278
G 0.265 0.239 0.288 0.239 0.274
H 0.265 0.254 0.254 0.254 0.253

*ESP = EP: ** ESP = SP
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