• Title/Summary/Keyword: Inflow noise

Search Result 67, Processing Time 0.029 seconds

Noise Reduction of PDP TV Cooling Fan System through Parameter Analysis (인자 분석을 통한 플라즈마 디스플레이 패널(Plasma Display Panel) 텔레비전에서의 냉각 홴 시스템 소음 저감)

  • Kim, Kyu-Young;Choi, Min-Goo;Lee, Duck-Joo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.2 s.107
    • /
    • pp.107-114
    • /
    • 2006
  • The present experimental study deals with noise reduction and improvements in cooling performance in a plasma display panel (PDP) television (TV). The main ideas of the fan system noise reduction are maintenance of uniform inflow condition and reduction of the system loss, ${\Delta}P.$ The discrete noise is mainly related with the inflow condition therefore removing the structure which distorts inflow makes the discrete noise reduction. The broadband noise in PDP TV is related with the system losses which result from the presence of the fan downstream obstacle, PDP rear case. Through the modification of the distance and preventing the leakage flow between the fan and rear case, we can obtain the system loss and broadband noise reduction. Additionally we can reduce fan rotating speed because of increased flow rate which obtains from the reduction of system loss (resistance). Finally, 4.2 dB(A) noise reduction and $10\%$ increase in flow rate are achieved. From these results, we show that the reduction of system loss is the most effective way of the fan system noise reduction.

Large Eddy Simulation of a High Subsonic Jet and Noise Generation

  • Fukuda, Yuya;Teramoto, Susumu;Nagashima, Toshio
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.612-621
    • /
    • 2008
  • For the purpose of improving accuracy in jet noise prediction and investigating its generation mechanism, high subsonic jets were computed by using compressible Large Eddy Simulation(LES), wherein the inflow forcing or disturbance added in the inflow shear layer was incorporated. The far-field Sound Pressure Levels(SPL) as well as the flow field resulted in good agreement with available experimental data by applying only the high azimuthal modes among the inflow forcing parameters. We found that this result was due to an important role of the inflow forcing upon breaking down the axiymmetric vortices that caused high amplitude velocity and pressure fluctuations. In order to examine generation mechanism of the dominant noise component, wavelet transformation was introduced to reveal the presence of a well-organized structure of pressure fluctuations that originated mainly from vortex motions near the end of the jet potential core. This structure took a train of alternately positive and negative wavelet-transformed pressure regions along the jet distance, spreading towards the downstream with advection and propagation. It was concluded that this structure and its dynamic motion are the reason why a high subsonic jet produces the dominant noise with a particular downstream directivity.

  • PDF

Design of automotive engine cooling fan and study on noise reduction through modification of system (자동차용 냉각팬의 설계와 시스템 개선을 통한 저소음화 연구)

  • 김병주;강상규;김규영;이덕주;이재영;이덕호;신동수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.196-201
    • /
    • 2003
  • Axial fans are widely used for automotive engine cooling device due to their ability to produce high flow rate to keep engine cool. At the same time, the noise generated by these fans causes one of the most serious problems. Especially, engine cooling fan noise in idle condition of a car is noticeable. Therefore, the high efficient and low-noise fan is seriously needed. When a new fan system is designed, system resistance and non-uniform inflow are the key factors to get the high performance and low noise fan system. In this study, experimental study on the fan and system was carried out and brought a successful result of performance and noise from a designed fan. And through the modification of the fan system, the fan produced more flow rate and became less noisy.

  • PDF

The response of a blade row to a three-dimensional turbulent gust

  • Wei, Dingbing;Kim, Dae-Hwan;Cheong, Cheol-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.74-75
    • /
    • 2010
  • Inflow broadband noise is generated when turbulence in the rotor wakes impinges on the downstream stator vanes. In this paper a three-dimensional model is developed to investigate the broadband noise due to turbulence-cascade interaction. In the newly-developed model, we consider the effects of incident turbulent gust component in span-wise direction on the inflow broadband noise. The quasi-three-dimensional theory is deduced based on the tonal analytic theory of Smith (1972) and two-dimensional broadband noise generalization by Cheong et al. (2006; 2009). Extending the modified LINSUB code, quasi-three-dimensional computational results are presented. Finally, we compare these computational results with time-domain results to validate the theory.

  • PDF

Prediction of acoustic power radiated from an airfoil with thickness in turbulent flow (난류 유동장 내 두께를 가지는 단일 에어포일의 음향파워 예측)

  • Kim, Daehwan;Cheong, Cheolung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.353-358
    • /
    • 2013
  • Present paper deals with turbulence-airfoil interaction noise and mainly investigates the effects of airfoil thickness on the broadband noise spectrum. The acoustic power radiation from an airfoil is predicted using high-order time-domain method, which is based on the computational aeroacoustic technique solving the linear Euler equations. The homogeneous and isotropic turbulence is generated by utilizing the synthetic turbulence modeling based on random particle method. The airfoils taken into consideration are a flat-plate and a NACA0012 airfoil aligned with uniform mean flow. The effects of airfoil thickness on the radiated inflow turbulence noise are investigated by comparing acoustic power spectrum predicted for each airfoil. The comparison of acoustic power spectrum reveals that the airfoil thickness significantly contributes the high frequency noise reduction.

  • PDF

Design of Automotive Engine Cooling Fan and Study on Noise Reduction through Modification of System (자동차용 냉각홴의 설계와 시스템 개선을 통한 저소음화 연구)

  • 김병주;강상규;김규영;이재영;이덕호;신동수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1107-1114
    • /
    • 2004
  • Axial fans are widely used for automotive engine cooling device due to their ability to produce high flow rate to keep engine cool. At the same time, the noise generated by these fans causes one of the most serious problems. Especially, engine cooling fan noise in idle condition of a car is noticeable. Therefore. the high efficient and low-noise fan is seriously needed. When a new fan system is designed, system resistance and non-uniform inflow are the key factors to get the high performance and low noise fan system. In this study, aerodynamic and acoustic calculations are carried out on the automotive cooling fan and system. Effects of various design parameters are studied through the free wake analysis and experiments. Better performance and noise characteristic are obtained for the new design fan using the methodology. Furthermore through the modification of the fan system geometry parameters, the fan system produce more flow rate and become less noisy.

Correlation analysis and time series analysis of Ground-water inflow rate into tunnel of Seoul subway system

  • 김성준;이강근;염병우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.254-257
    • /
    • 2003
  • Statistical analysis is performed to estimate the correlations between geological or geographical factor and groundwater inflow rates in the Seoul subway system. Correlation analysis shows that among several geological and geographical factors fractures and streams have most strong effects on inflow rate into tunnels. In particular, subway line 5∼8 are affected more by these factors than subway line 1∼4. Time series analysis is carried out to forecast groundwater inflow rate. Time series analysis is a useful empirical method for simulation and forecasts in case that physical model can not be applied to. The time series of groundwater inflow rates is calculated using the observation data. Transfer function-noise model is applied with the precipitation data as input variables. For time series analysis, statistical methods are performed to identify proper model and autoregressive-moving average models are applied to evaluation of inflow rate. Each model is identified to satisfy the lowest value of information criteria. Results show that the values by result equations are well fitted with the actual inflow rate values. The selected models could give a good explanation of inflow rates variation into subway tunnels.

  • PDF

Future Inflow Simulation Considering the Uncertainties of TFN Model and GCMs on Chungju Dam Basin (TFN 모형과 GCM의 불확실성을 고려한 충주댐 유역의 미래 유입량 모의)

  • Park, Jiyeon;Kwon, Ji-Hye;Kim, Taereem;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.2
    • /
    • pp.135-143
    • /
    • 2014
  • In this study, Chungju inflow was simulated for climate change considering the uncertainties of GCMs and a stochastic model. TFN (Transfer Function Noise) model and 4 different GCMs (CNRM, CSIRO, CONS, UKMO) based on IPCC AR4 A2 scenario were used. In order to evaluate uncertainty of TFN model, 100 cases of noises are applied to the TFN model. Thus, 400 cases of inflow results are simulated. Future inflows according to the GCMs show different rates of changes for the future 3 periods relative to the past 30-years reference period. As the results, the summer inflow shows increasing trend and the spring inflow shows decreasing trend based on AR4 A2 scenario.

A Study on Trailing Edge Noise from a Blade Cascade in a Uniform Flow (케스케이드 날개 후단소음 특성에 관한 연구)

  • J. M. Son;Kim, H. K.;Lee, S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.366.1-366
    • /
    • 2002
  • It is addressed that the turbulent broadband sound power from a sirocco fan can be modeled by the trailing edge noise. The trailing edge noise is usually influenced by inflow turbulence, separation, and boundary layer on the blade. The design parameters such as solidity(c/s) and stagger angle are specified to predict performance and noise level because the separation and slip velocity are strong1y affected by them along with the flow coefficient. (omitted)

  • PDF

Modal acoustic power of broadband noise by interaction of a cascade of flat-plate airfoils with inflow turbulence (평판 에어포일 캐스케이드와 입사 난류의 상호작용에 의한 광대역 소음의 모달 음향 파워)

  • Cheong, Cheol-Ung;Jurdic, Vincent;Joseph, Phillip
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1467-1475
    • /
    • 2007
  • This paper investigates the modal acoustic power by a cascade of flat-plate airfoils interacting with homogeneous, isotropic turbulence. Basic formulation for the acoustic power upstream and downstream is based on the analytical theory of Smith and its generalization due to Cheong et al. The acoustic power spectrum has been expressed as the sum of cut-on acoustic modes, whose modal power is the product of three terms: a turbulence series, an upstream or downstream power factor and an upstream or downstream acoustic response function. The effect of these terms in the modal acoustic power has been examined. For isotropic turbulence gust, the turbulent series are only reducing factor of the modal acoustic power. The power factor tends to reduce the modal acoustic power in the upstream direction, although the power factor is liable to increase the modal acoustic power in the downstream direction. The modes close to cut-off are decreasing strongly, especially in the downstream direction. Therefore the modes close to cut-off don't contribute highly to the radiated acoustic power in the downstream direction, although the modal acoustic pressure is high for these modes.

  • PDF