• Title/Summary/Keyword: Inflammatory cells

Search Result 4,910, Processing Time 0.028 seconds

Anti-inflammatory Effects of Complex Extract including Eucommia ulmoides in LPS-induced RAW 264.7 Cells

  • Ryu, Hwa Yeon;Lee, Hyun;Kong, Hae Jin;Kang, Jae Hui
    • Journal of Acupuncture Research
    • /
    • v.36 no.4
    • /
    • pp.256-263
    • /
    • 2019
  • Background: The purpose of this study was to investigate the anti-inflammatory response of lipopolysaccharide (LPS) activated macrophages (RAW 264.7 murine cell line) to JCE003 which is an extract including Eucommia ulmoides, Juglans regia, Eleutherococcus senticosus, and Zingiber officinale. Methods: An MTT [3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide] assay was performed to analyze the survival rate of RAW 264.7 cells. The production of nitric oxide and pro-inflammatory cytokines (IFN-${\gamma}$, TNF-${\alpha}$, IL-$1{\beta}$, IL-6) in LPS-induced RAW 264.7 cells was measured by enzyme-linked immunosorbent assay. mRNA expression levels of pro-inflammatory cytokines (IFN-${\gamma}$, TNF-${\alpha}$, IL-$1{\beta}$, and IL-6) were analyzed by quantitative polymerase chain reaction analysis. Results: Exposure of LPS-activated RAW 264.7 cells to JCE003 was not cytotoxic up to $400{\mu}g/mL$, but cell survival was statistically significantly decreased at $800{\mu}g/mL$ (p < 0.001). Nitric oxide production was not markedly lowered in LPS-activated RAW 264.7 cells by exposure to JCE003 (10, 50, 100, 200, 400, $800{\mu}l/mL$) compared with the Control group. In addition, JCE003 reduced the production of TNF-${\alpha}$ in LPS-induced RAW 264.7 cells at $400{\mu}g/mL$ (p < 0.05), but IFN-${\gamma}$ and TNF-${\alpha}$ mRNA expression in LPS-induced RAW 264.7 cells was decreased at 100, 200, and $400{\mu}g/mL$ JCE003 (p < 0.01). Conclusion: These results suggest that JCE003 inhibited the expression and production of pro-inflammatory cytokines in LPS-activated RAW 264.7 cells. The findings of this study provide basic data for the development of new Korean medicine anti-inflammatory drugs.

Anti-inflammatory Effects of Abeliophyllum distichurn Flower Extract

  • Lee, Jin Wook;Kang, Yoon Joong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.89-89
    • /
    • 2018
  • Abeliophyllum distichum is a medicinal plant used in regional traditional medicine to relieve pain in inflammatory processes. In this study, anti-inflammatory effects of Abeliophyllum distichum stem (ADS) ethyl acetate extract were examined. Furthermore, possible molecular mechanisms of the anti-inflammatory effects were dissected. The anti-inflammatory activity was investigated by inhibition of lipopolysaccharide (LPS) induced pro-inflammatory cytokine production in murine macrophage-like cell line Raw264.7 cells and human microglial cell line BV2 cells. The measurement of the induced pro-inflammatory cytokine levels were carried out by ELISA. The phosphorylation of ERK1/2, JNK, and MAPK, and the nuclear expression of nuclear factor $NF-{\kappa}B$ p65 were investigated by Western blot analysis. The extract of ADS significantly decreased the production of pro-inflammatory cytokines. In addition, the extract suppressed the phosphorylation of ERK1/2, JNK, and p38 MAPK, and the nuclear translocation of $NF-{\kappa}B$ p65 in activated cells. Our findings provide evidence for the popular use of Abeliophylli distichum in inflammation around Goesan region and also suggest that the stem extract has potential therapeutic benefits against several inflammatory diseases.

  • PDF

The Anti-inflammatory Mechanism of Protaetia brevitarsis Lewis via Suppression the Activation of NF-κB and Caspase-1 in LPS-stimulated RAW264.7 Cells

  • Myung, Noh-Yil;Ahn, Eun-Mi;Kim, Su-Jin
    • Biomedical Science Letters
    • /
    • v.26 no.4
    • /
    • pp.267-274
    • /
    • 2020
  • The larva of Protaetia brevitarsis Lewis (P. brevitarsis), edible insect, is traditionally consumed as alternative source of nutrients and has various health benefits. However, the exact pharmaceutical effects of P. brevitarsis on inflammatory response are still not well understood. Thus, we investigated the anti-inflammatory effects and mechanisms of P. brevitarsis in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. We investigated the effects of P. brevitarsis on the expression levels of inflammatory-related genes, including inflammatory cytokines, prostaglandin E2 (PGE2), cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) in LPS-stimulated RAW264.7 cells. To understand the anti-inflammatory mechanism of P. brevitarsis, we explored the regulatory effect of P. brevitarsis on nuclear factor (NF)-κB and caspase-1 activation. The findings of this study demonstrated that P. brevitarsis inhibits the LPS-induced inflammatory cytokine and PGE2 levels, as well as COX-2 and iNOS expression. Moreover, we confirmed that the anti-inflammatory effect of P. brevitarsis occurs via suppression of the activation of NF-κB and caspase-1. Conclusively, these findings provide experimental evidence that P. brevitarsis may be useful candidate for the treatment of inflammatory-related diseases.

Inhibitory effects of Zanthoxylum piperitum on the LPS-induced production of nitric oxide and proinflammatory cytokines in RAW264.7 cells (초피(椒皮)의 RAW264.7세포에서의 LPS에 의해 유도되는 nitric oxide 및 전염증사이토카인 생성억제효과)

  • Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.21 no.4
    • /
    • pp.69-76
    • /
    • 2006
  • Objectives : The fresh young leaves and dried fruits of Zanthoxylum piperitum (Korean name: Chopi) are used as diuretics, stomachies, anthelmintic and for the treatments of disorders of the digestive organ in Asia. We investigated inhibitory effects of Zanthoxylum piperitum extract on lipopolysaccharide(LPS)-induced production of nitric oxide(NO) and pro-inflammatory cytokines including $TNF-{\alpha}$ and $IL-1{\beta}$ from RAW264.7 mouse macrophage cells. Methods : After methanol extract of Zanthoxylum Fructus (Zanthoxylum extract) was pretreated in RAW264.7 cells, the cells were stimulated with LPS. Cell toxicity of Zanthoxylum extract was assayed bv MTT assay. The production of NO from the cells was measured in culture medium by Griess reaction. The production of $TNF-{\alpha}$ and $IL-1 \;{\beta}$ from the cells was measured in culture medium by ELISA. Results : Zanthoxylum Fructus extract greatly inhibited the production of inflammatory mediators such as NO, $TNF-{\alpha}$ and $IL-1{\beta}$ from LPS-stimulated RAW264.7 cells. Conclusion : This result suggests that Zanthoxylum extract may have an anti-inflammatory effect through the inhibition of inflammatory mediators.

  • PDF

Probiotics Inhibit Lipopolysaccharide-Induced Interleukin-8 Secretion from Intestinal Epithelial Cells

  • Oh, Hyun-Wook;Jeun, Gi-Hoon;Lee, Jin;Chun, Tae-Hoon;Kim, Sae-Hun
    • Food Science of Animal Resources
    • /
    • v.32 no.4
    • /
    • pp.434-440
    • /
    • 2012
  • It has been suggested that probiotics could be useful for the prevention of symptomatic relapse in patients with inflammatory bowel disease (IBD). Interleukin (IL)-8 has been well recognized as one of the pro-inflammatory cytokines that could trigger inflammation and epithelial barrier dysfunction. In this study, the anti-inflammatory effects of probiotics were investigated using a human epithelial cell line (HT-29). Probiotics from infant feces and kimchi were tested for their cytotoxicity and effects on adhesion to epithelial cells. The present results show that seven strains could form 70 % adhesion on HT-29. The probiotics used in this study did not affect HT-29 cell viability. To screen anti-inflammatory lactic acid bacteria, HT-29 cells were pretreated with live and heat-killed probiotics, and lipopolysaccharide (LPS) ($1{\mu}g/mL$) was then added to stimulate the cells. The cell culture supernatant was then used to measure IL-8 secretion by ELISA, and the cell pellet was used to determine IL-8 and toll-like receptor (TLR-4) mRNA expression levels by RT-PCR. Some probiotics (KJP421, KDK411, SRK414, E4191, KY21, and KY210) exhibited anti-inflammatory effects through the repression of IL-8 secretion from HT-29 cells. In particular, Lactobacillus salivarius E4191, originating from Egyptian infant feces, not only decreased IL-8 mRNA expression, but also decreased TLR-4 expression. These results indicate that Lactobacillus salivarius E4191 may have a protective effect in intestinal epithelial cells.

Anti-inflammatory Effects of Kiyomi (Citrus unshiu × C. sinensis) Leaf Ethanol Extract Via the Regulation of NF-𝜅B and MAPKs in LPS Induced RAW 264.7 Cells (청견 잎 에탄올 추출물의 NF-𝜅B와 MAPK 조절을 통한 항염증 효과)

  • Chung-Mu Park;Hyun-Seo Yoon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.3
    • /
    • pp.159-169
    • /
    • 2023
  • Purpose : Though other Citrus spp. have reported their anti-inflammatory and antioxidative activities in previous studies, the biological activity of Kiyomi (Citrus unshiu × C. sinensis) has not been reported yet. Therefore, this study attempted to analyze the anti-inflammatory mechanisms of Kiyomi leaf ethanol extract (KLEE) in lipopolysaccharide (LPS) stimulated RAW 264.7 cells. Methods : The cytotoxic effect of KLEE in RAW 264.7 cells was determined by WST-1 assay. Bacterial endotoxin, the concentration of nitric oxide (NO) was analyzed by the Griess reaction. In addition, Western blot analysis was applied to measure the protein expression level of inducible NO synthase (iNOS). The phosphorylated status of the critical inflammatory transcription factor, nuclear factor (NF)-𝜅B, and its upstream signaling molecules, phosphoinositide 3-kinase (PI3K)/Akt as well as mitogen-activated protein kinases (MAPKs), were also measured by Western blot analysis. Results : KLEE was not cytotoxic up to a concentration of 200 ㎍/㎖, and protein expression levels of iNOS and cyclooxygenase (COX)-2, enzymes that counteract NO and prostaglandin (PG) E2 production, were inhibited by KLEE treatment. The phosphorylated status of PI3K/Akt as well as MAPKs including extracellular regulated kinase (ERK), c-jun NH2kinase (JNK), and p38, were significantly attenuated by KLEE treatment in LPS stimulated RAW 264.7 cells. Moreover, one of phase II enzymes, heme oxygenase (HO)-1 which has known for its anti-inflammatory capacity, was strongly induced by KLEE treatment. Conclusion : Consequently, KLEE treatment significantly attenuated the production of NO as well as the expression levels of iNOS and COX-2 in LPS-stimulated RAW 264.7 cells. The inflammatory transcription factor, NF-𝜅B, as well as its upstream signaling molecules, PI3K/Akt and MAPKs, were also diminished by KLEE treatment with statistical significance in LPS-stimulated RAW 264.7 cells. These results suggest that KLEE might be a promising candidate for the attenuation of inflammatory disorders.

Inflammatory response to Trichomonas vaginalis in the pathogenesis of prostatitis and benign prostatic hyperplasia

  • Ik-Hwan Han;Jung-Hyun Kim;Jae-Sook Ryu
    • Parasites, Hosts and Diseases
    • /
    • v.61 no.1
    • /
    • pp.2-14
    • /
    • 2023
  • Trichomonas vaginalis is a flagellated protozoan that causes trichomoniasis, a common nonviral sexually transmitted infection. T. vaginalis infection is asymptomatic in most infected men but can lead to chronic infection. The inflammatory response to chronic T. vaginalis infection may contribute to prostatic diseases, such as prostatitis and benign prostatic hyperplasia (BPH); however, studies on the relationship between T. vaginalis infection and prostate diseases are scarce. In this review, we discuss evidence from our studies on the involvement of T. vaginalis in the pathogenesis of prostate diseases, such as prostatitis and BPH. Studies of prostatitis have demonstrated that the attachment of T. vaginalis trophozoite to prostate epithelial cells (PECs) induces inflammatory cytokine production and inflammatory cell migration, leading to prostatitis. T. vaginalis also causes pathological changes, such as inflammatory cell infiltration, acinar changes, interstitial fibrosis, and mast cell infiltration, in prostate tissues of infected rats. Thus, T. vaginalis is considered an infectious agent that triggers prostatitis. Meanwhile, studies of prostatic hyperplasia revealed that mast cells activated by T. vaginalis-infected prostate cells secreted inflammatory mediators, such as β-hexosaminidase and tryptase, which promoted proliferation of prostate stromal cell (PSC). Moreover, interleukin-6 produced by proliferating PSCs induced the multiplication of BPH-1 epithelial cells as a result of stromal-epithelial interaction, suggesting that the proliferation of T. vaginalis-infected prostate cells can be induced through crosstalk with mast cells. These collective findings suggest that T. vaginalis contributes to the progression of prostatitis and prostatic hyperplasia by creating an inflammatory microenvironment involving PECs and PSCs.

IMMUNOHISTOCHEMICAL STUDIES ON CELL POPULATION AND GROWTH FACTORS IN GINGIVAL HYPERPLASIA (치은증식시 세포구성과 성장인자에 관한 면역조직화학적 연구)

  • Lee, Kang-Nam;Han, Soo-Boo;Lee, Jae-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.24 no.2
    • /
    • pp.357-375
    • /
    • 1994
  • The purpose of this study was to investigate the differences of histochemical characteristics in inflammatory fibrous gingival hyperplasia (FGH), phenytoin-induced gingival hyperplasia(PIGH), idiopathic gingival hyperplasia(IDGH) and control groups (healthy and inflammatory gingiva) by immunohistochemical method with various antibodies and histomorphological analysis. In immunohistochemical finding, antibodies to inflammatory cells (T/B lymphocytes, macrophages, other monocytes), proliferating cell nuclear antigen(PCNA), epidermal growth factor(EGF), factor VIII, and type I collagen were used. 1. The inflammatory infiltrates in FGH were less than those in inflammatory gingiva. The composition of inflammatory cells of PIGH was similar with that of FGH. IDGH showed a similar histologic findings with healthy gingival tissue. 2. In FGH, the number of fibroblasts and newly-formed collagen fibers was increased. No significant increase of fibroblasts and the dense accumulation of thick collagen fibers were seen in PIGH. The increase of fibroblasts and the dense accumulation of thick collagen were seen in IDGH. 3. PCNA-positive cells were localized mainly in the area accumulated with inflammatory cells and blood vessels, significantly increased in all hyperplastic tissue groups, and distributed evenly in IDGH. 4. The distribution of EGF were not observed in healthy gingiva but detected locally in area with confluent blood vessels,without significant difference between the other tissue groups. This results suggest that inflammation plays a significant role in inducing hyperplastic change of gingival tissue. While in DIGH, drug itself as well as inflammation seems to attribute to hyperplastic change.

  • PDF

Anti-Inflammatory Effect of Hexane Fraction from Eisenia bicyclis on Lipopolysaccharides-Treated RAW 264.7 Cells (LPS로 유도된 RAW 264.7 대식세포에 대한 대황(Eisenia bicyclis) 헥산 분획물의 항염증 효과)

  • Kim, Bowoon;Choi, Chang-Geun;Kim, Jae-Il;Kim, Hyeung-Rak
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.2
    • /
    • pp.152-161
    • /
    • 2021
  • Eisenia bicyclis is known to have secondary metabolites exhibiting various biological activities. In a preliminary study, the n-hexane fraction obtained from the ethanolic extract of E. bicyclis showed higher anti-inflammatory activity than the ethyl acetate and butyl alcohol fractions based on the inhibition of lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production in RAW 264.7 cells. Using this fraction (E. bicyclis hexane fraction, EHF), we investigated the molecular mechanisms underlying its anti-inflammatory effect in LPS-stimulated RAW 264.7 cells. Pretreatment of the cells with up to 50 ㎍/mL EHF significantly inhibited NO and prostaglandin E2 production as well as their responsible enzyme proteins and mRNAs, in a dose-dependent manner (P<0.05). Similarly, EHF markedly reduced the production of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α as well as their mRNA levels. Nuclear translocation of nuclear factor-kappa B (NF-κB) was strongly suppressed by EHF treatment. EHF significantly reduced the phosphorylation of mitogen-activated protein kinases and phosphatidylinositol 3-kinase/Akt in LPS-stimulated cells. Moreover, EHF reduced ear edema in phorbol myristate acetate (PMA)-induced mice. These results indicate that EHF contains potent anti-inflammatory compounds, which may be used as a dietary supplement for the prevention of inflammatory diseases.

Anti-inflammatory Effect of Mangosteen (Garcinia mangostana L.) Peel Extract and its Compounds in LPS-induced RAW264.7 Cells

  • Widowati, Wahyu;Darsono, Lusiana;Suherman, Jo;Fauziah, Nurul;Maesaroh, Maesaroh;Erawijantari, Pande Putu
    • Natural Product Sciences
    • /
    • v.22 no.3
    • /
    • pp.147-153
    • /
    • 2016
  • Inflammation plays an important role in host defense against external stimuli such as infection by pathogen, endotoxin or chemical exposure by the production of the inflammatory mediators that produced by macrophage. Anti-inflammatory factor is important to treat the dangers of chronic inflammation associated with chronic disease. This research aims to analyze the anti-inflammatory effects of Garcinia mangostana L. peel extract (GMPE), ${\alpha}$-mangostin, and ${\gamma}$-mangostin in LPS-induced murine macrophage cell line (RAW 264.7) by inhibiting the production of inflammatory mediators. The cytotoxic assay of G. mangostana L. extract, ${\alpha}$-mangostin, and ${\gamma}$-mangostin were performed by MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) to determine the safe and non-toxic concentration in RAW 264.7 for the further assay. The concentration of inflammatory mediators (COX-2, IL-6, and IL-$1{\beta}$) were measured by the ELISA-based assay and NO by the nitrate/nitrite colorimetric assay in treated LPS-induced RAW 264.7 cells. The inhibitory activity was determined by the reducing concentration of inflammatory mediators in treated LPS-induced RAW 264.7 over the untreated cells. This research revealed that GMPE, ${\alpha}$-mangostin, and ${\gamma}$-mangostin possess the anti-inflammatory effect by reducing COX-2, IL-6, IL-$1{\beta}$, and NO production in LPS-induces RAW 264.7 cells.