• Title/Summary/Keyword: Inference function

Search Result 450, Processing Time 0.027 seconds

Hardware Approach to Fuzzy Inference―ASIC and RISC―

  • Watanabe, Hiroyuki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.975-976
    • /
    • 1993
  • This talk presents the overview of the author's research and development activities on fuzzy inference hardware. We involved it with two distinct approaches. The first approach is to use application specific integrated circuits (ASIC) technology. The fuzzy inference method is directly implemented in silicon. The second approach, which is in its preliminary stage, is to use more conventional microprocessor architecture. Here, we use a quantitative technique used by designer of reduced instruction set computer (RISC) to modify an architecture of a microprocessor. In the ASIC approach, we implemented the most widely used fuzzy inference mechanism directly on silicon. The mechanism is beaded on a max-min compositional rule of inference, and Mandami's method of fuzzy implication. The two VLSI fuzzy inference chips are designed, fabricated, and fully tested. Both used a full-custom CMOS technology. The second and more claborate chip was designed at the University of North Carolina(U C) in cooperation with MCNC. Both VLSI chips had muliple datapaths for rule digital fuzzy inference chips had multiple datapaths for rule evaluation, and they executed multiple fuzzy if-then rules in parallel. The AT & T chip is the first digital fuzzy inference chip in the world. It ran with a 20 MHz clock cycle and achieved an approximately 80.000 Fuzzy Logical inferences Per Second (FLIPS). It stored and executed 16 fuzzy if-then rules. Since it was designed as a proof of concept prototype chip, it had minimal amount of peripheral logic for system integration. UNC/MCNC chip consists of 688,131 transistors of which 476,160 are used for RAM memory. It ran with a 10 MHz clock cycle. The chip has a 3-staged pipeline and initiates a computation of new inference every 64 cycle. This chip achieved an approximately 160,000 FLIPS. The new architecture have the following important improvements from the AT & T chip: Programmable rule set memory (RAM). On-chip fuzzification operation by a table lookup method. On-chip defuzzification operation by a centroid method. Reconfigurable architecture for processing two rule formats. RAM/datapath redundancy for higher yield It can store and execute 51 if-then rule of the following format: IF A and B and C and D Then Do E, and Then Do F. With this format, the chip takes four inputs and produces two outputs. By software reconfiguration, it can store and execute 102 if-then rules of the following simpler format using the same datapath: IF A and B Then Do E. With this format the chip takes two inputs and produces one outputs. We have built two VME-bus board systems based on this chip for Oak Ridge National Laboratory (ORNL). The board is now installed in a robot at ORNL. Researchers uses this board for experiment in autonomous robot navigation. The Fuzzy Logic system board places the Fuzzy chip into a VMEbus environment. High level C language functions hide the operational details of the board from the applications programme . The programmer treats rule memories and fuzzification function memories as local structures passed as parameters to the C functions. ASIC fuzzy inference hardware is extremely fast, but they are limited in generality. Many aspects of the design are limited or fixed. We have proposed to designing a are limited or fixed. We have proposed to designing a fuzzy information processor as an application specific processor using a quantitative approach. The quantitative approach was developed by RISC designers. In effect, we are interested in evaluating the effectiveness of a specialized RISC processor for fuzzy information processing. As the first step, we measured the possible speed-up of a fuzzy inference program based on if-then rules by an introduction of specialized instructions, i.e., min and max instructions. The minimum and maximum operations are heavily used in fuzzy logic applications as fuzzy intersection and union. We performed measurements using a MIPS R3000 as a base micropro essor. The initial result is encouraging. We can achieve as high as a 2.5 increase in inference speed if the R3000 had min and max instructions. Also, they are useful for speeding up other fuzzy operations such as bounded product and bounded sum. The embedded processor's main task is to control some device or process. It usually runs a single or a embedded processer to create an embedded processor for fuzzy control is very effective. Table I shows the measured speed of the inference by a MIPS R3000 microprocessor, a fictitious MIPS R3000 microprocessor with min and max instructions, and a UNC/MCNC ASIC fuzzy inference chip. The software that used on microprocessors is a simulator of the ASIC chip. The first row is the computation time in seconds of 6000 inferences using 51 rules where each fuzzy set is represented by an array of 64 elements. The second row is the time required to perform a single inference. The last row is the fuzzy logical inferences per second (FLIPS) measured for ach device. There is a large gap in run time between the ASIC and software approaches even if we resort to a specialized fuzzy microprocessor. As for design time and cost, these two approaches represent two extremes. An ASIC approach is extremely expensive. It is, therefore, an important research topic to design a specialized computing architecture for fuzzy applications that falls between these two extremes both in run time and design time/cost. TABLEI INFERENCE TIME BY 51 RULES {{{{Time }}{{MIPS R3000 }}{{ASIC }}{{Regular }}{{With min/mix }}{{6000 inference 1 inference FLIPS }}{{125s 20.8ms 48 }}{{49s 8.2ms 122 }}{{0.0038s 6.4㎲ 156,250 }} }}

  • PDF

인지발달에 근거를 둔 수학학습 유형 탐색

  • 박성태
    • The Mathematical Education
    • /
    • v.34 no.1
    • /
    • pp.17-63
    • /
    • 1995
  • The exploration of Mathematics-learningmodel on the basis of Cognitive development The purpose of this paper is to sequenctialize Mathematics-learning contents, and to explore teaching-learning model for mathematics, with on the basis of the theory of cognitive development and the period of condservation formation for children. The Specific topics are as follows: (1) Systemizing those theories of cognitive development which are related to Mathematics - learning for children. (2) Organizing a sequence of Mathematics - learning, on the basis of experimental research for the period of conservation formation for children. (3) Comparing the effects of 4 types of teaching - learning model, on the basis of inference activity and operational learning principle. $\circled1$ Induction-operation(IO) $\circled2$ Induction-explanation(IE) $\circled3$ Deduction-operation(DO) $\circled4$ Deduction-explanation(DE) The results of the subjects are as follows: (1) Cognitive development theory and Mathe-matics education. $\circled1$ Congnitive development can be achieved by constant space and Mathematics know-ledge is obtained by the interaction of experience and reason. $\circled2$ The stages of congnitive development for children form a hierarchical system, its function has a continuity and acts orderly. Therefore we need to apply cognitive development for children to teach mathematics systematically and orderly. (2) Sequence of mathematical concepts. $\circled1$ The learning effect of mathematical concepts occurs when this coincides with the period of conservation formation for children. $\circled2$ Mathematics Curriculum of Elementary Schools in Korea matches with the experimental research about the period of Piaget's conservation formation. (3) Exploration of a teaching-learning model for mathematics. $\circled1$ Mathematics learning is to be centered on learning by experience such as observation, operation, experiment and actual measurement. $\circled2$ Mathematical learning has better results in from inductional inference rather than deductional inference, and from operational inference rather than explanatory inference.

  • PDF

Identification of Fuzzy Inference Systems Using a Multi-objective Space Search Algorithm and Information Granulation

  • Huang, Wei;Oh, Sung-Kwun;Ding, Lixin;Kim, Hyun-Ki;Joo, Su-Chong
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.853-866
    • /
    • 2011
  • We propose a multi-objective space search algorithm (MSSA) and introduce the identification of fuzzy inference systems based on the MSSA and information granulation (IG). The MSSA is a multi-objective optimization algorithm whose search method is associated with the analysis of the solution space. The multi-objective mechanism of MSSA is realized using a non-dominated sorting-based multi-objective strategy. In the identification of the fuzzy inference system, the MSSA is exploited to carry out parametric optimization of the fuzzy model and to achieve its structural optimization. The granulation of information is attained using the C-Means clustering algorithm. The overall optimization of fuzzy inference systems comes in the form of two identification mechanisms: structure identification (such as the number of input variables to be used, a specific subset of input variables, the number of membership functions, and the polynomial type) and parameter identification (viz. the apexes of membership function). The structure identification is developed by the MSSA and C-Means, whereas the parameter identification is realized via the MSSA and least squares method. The evaluation of the performance of the proposed model was conducted using three representative numerical examples such as gas furnace, NOx emission process data, and Mackey-Glass time series. The proposed model was also compared with the quality of some "conventional" fuzzy models encountered in the literature.

A Study on Color Information Recognition with Improved Fuzzy Inference Rules (개선된 퍼지 추론 규칙을 이용한 색채 정보 인식에 관한 연구)

  • Woo, Seung-Beom;Kim, Kwang-Baek
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.105-111
    • /
    • 2009
  • Widely used color information recognition methods based on the RGB color model with static fuzzy inference rules have limitations due to the model itself - the detachment of human vision and applicability of limited environment. In this paper, we propose a method that is based on HSI model with new inference process that resembles human vision recognition process. Also, a user can add, delete, update the inference rules in this system. In our method, we design membership intervals with sine, cosine function in H channel and with functions in trigonometric style in S and I channel. The membership degree is computed via interval merging process. Then, the inference rules are applied to the result in order to infer the color information. Our method is proven to be more intuitive and efficient compared with RGB model in experiment.

  • PDF

Building Thesaurus for Science & Technology Domain Using Facets and Its Application to Inference Services (패싯(Facet)을 이용한 과학기술분야 시소러스 구축과 활용방안)

  • Hwang, Soon-Hee;Jung, Han-Min;Sung, Won-Kyung
    • Journal of Information Management
    • /
    • v.37 no.3
    • /
    • pp.61-84
    • /
    • 2006
  • In this paper, we proposed one of the methods for building thesaurus in Science & Technology domain and investigated its applicability as an inference service based on ontology. There exist as many building methods for thesaurus as its role and function, and actually many thesauri capable of ensuring the accuracy and efficiency in information search are being built by many experts. After examining the previous studies related to the principles of building thesaurus and relevant concept "facet", we focused on its characteristics and applied it to building thesaurus. The facet is classified into 2 categories, conceptual facet and relational facet. The latter contains 3 subcategories: category relational facet, attribute relational facet and thematic relational facet. The thesaurus for Science & Technology domain using facets can be applied as a web-based inference service. As a result, the three types of inference service, COP(Communities of Practice), Researcher Tracing and Research Map are provided by means of ontology, and can be applied for the Query Expansion.

A Study on the Autonomous Navigation of Mobile Robot using Adaptive Fuzzy Control (적응 퍼지 제어를 이용한 이동 로보트의 자율 주행에 관한 연구)

  • 오준섭;박진배최윤호
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.433-436
    • /
    • 1998
  • The objective of this paper is to design a adaptive fuzzy controller for autonomous navigation of mobile robot. The adaptive fuzzy controller has an advantage in data processing time and convergence speed. The basic idea of control is to induct membership function and fuzzy inference rules and to scale inducted membership function to suitable robot state. The adaptive fuzzy control method is applied to mobile robot and the simulation results show the effectiveness of our controller.

  • PDF

Generalized Weighted Linear Models Based on Distribution Functions

  • Yeo, In-Kwon
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.10a
    • /
    • pp.161-166
    • /
    • 2003
  • In this paper, a new form of generalized linear models is proposed. The proposed models consist of a distribution function of the mean response and a weighted linear combination of distribution functions of covariates. This form addresses a structural problem of the link function in the generalized linear models. Markov chain Monte Carlo methods are used to estimate the parameters within a Bayesian framework.

  • PDF

Simplified neuron functions for FPGA evaluations of engineering neuron on gate array and analogue circuit

  • Saito, Masayuki;Wang, Qianyi;Aoyama, Tomoo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.157.6-157
    • /
    • 2001
  • We estimated various neuron functions to construct of engineering neurons, which are the combination of sigmoid, linear, sine, quadric, double/single bended, soft max/minimum functions. These combinations are estimated by the property on the potential surface between the learning points, calculation speed, and learning convergence; because the surface depends on the inference ability of a neuron system; and speed and convergence are depend on the efficiency on the points of engineering applications. After the evaluating discussions, we can select more appropriate combination than original sigmoid function´s, which is single bended function and linear one. The combination ...

  • PDF

Review of Acceptance Sampling Plans for Parts Per Million Fraction of Defectives (PPM 부적합품률의 샘풀링 검사 계획의 고찰)

  • Choi, Sung-Woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.4
    • /
    • pp.137-142
    • /
    • 2007
  • This paper is to introduce attribute acceptance sampling plan based on statistical inference of binomial proportions such as PPM or PPB. In addition, this paper presents three variable sampling acceptance sampling plans based on $C_{pm},\;C_{pmk}$, and Taguchi's loss function. Producers are able to consider as not only external vendors but also internal customers.

On Chaotic Behavior of Fuzzy Inferdence Rule Based Nonlinear Functions

  • Ikoma, Norikazu
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.861-864
    • /
    • 1993
  • This research provides the results of a trial to generate the chaos by using nonlinear function constructed by fuzzy inference rules. The chaos generation function or chaotic behavior can be obtained by using Takagi-Sugeno fuzzy model with some constraint of the relationship of its parameters. Two examples are shown in this research. The first is simple example that construct of logistic image by fuzzy model. The second is more complicated one that provide the chaotic time series by non-linear autoregression based on fuzzy model. Simulated results are shown in these examples.

  • PDF