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Abstract

In this paper, a new form of generalized linear models is proposed. The proposed
models consist of a distribution function of the mean response and a weighted linear
combination of distribution functions of covariates. This form addresses a structural
problem of the link function in the generalized linear models. Markov chain Monte
Carlo methods are used to estimate the parameters within a Bayeéian framework.

Keywords: Bayesian inference, Markov chain Monte Carlo, mixtures of distributions,
parametric transformation.

1. Introduction

Suppose that Y7,..., Y, are independent random variables each with the probability den-
sity function f(y;;8;). Generalized linear models assume that the ¥; has a density function
in the exponential family of the form

Fi30:) = exp [a7(¢:) {wil — b(0:)} + c(vi, 64)]

for some specific known functions a(-), b(-), and ¢(-). Note that the mean and the variance
of the Y; is derived from the equations E(Y;) = p; = V'(8;) and var(Y;) = a(¢:)b"(6:),
respectively. In the generalized linear models specification, it is assumed that an unknown
parameter 0; depends on a particular regressor x; = {z;1,. .. ,a:ip)T and a link function g(-)
satisfies a linear models

9(w:) =« B,

where 8 = (B1,...,0p)7 is a vector of unknown parameters to be estimated. The link func-
tion describes the dependence of the y; on the linear predictor '3 for the regressor ;.
For a standard generalized linear model, we have 7' 8 = g(i;) = g(b'(6;)). The selection of
link functions has been one of primary issues in these models. Even though the canonical
link function leads to desirable and simple properties of the model, it is not guaranteed that
it should always be appropriate and well-behaved. A hardness of generalized linear models
for non-statistician is interpreting the regression parameter because of the nonlinearity of
link functions. In this paper, we present an alternative model which is also based on the
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exponential family and provides a flexible model structure and an easy interpretation about
the parameters.

2. The Proposed Models

Suppose Yi,...,Y, are independent responses and have a distribution in the exponen-
tial family with E(Y;) = u; € Q, where Q is the parameter space. The proposed model
assumes that the relationship between the mean response p; and the covariate vector
z; = (Zi1,-..,Tip) T takes the form

14
Fulws) = a;Uj(mi5),
j=1

where, for j=1,...,p, o; > 0 and Z?:l o = 1. The function F), is an arbitrary distribu-
tion function and U;’s are monotone function and have a value on [0,1]. We will call F), the
link distribution function and & = (o, ..., ;)T the weight parameters, respectively. Since
explanatory variable z;; is transformed to [0, 1] through a monotone function U; and is stan-
dardized, the weight parameter o; measures the relative importance of the j-th explanatory
variable in the model and can be also applied to a criterion of the variable selection in which
the covariates having a relatively small weight are removed from the model.
In order to parameterize the effect of the covariate z;;, we set

Ujlas) = Fy(ig) {1 = Fy(ai)} ™,

where Fj is an arbitrary distribution function and §; is either 0 or 1. Since F} is an increasing
function, B; = 1 implies that the j-th covariate has a positive effect to the mean response
and, otherwise, negative. We will also call Fj}'s the explanatory distribution functions and
B = (Pi,..-,Bp)T the effect parameters, respectively. Finally, we have

p
Fu(us) = Y agFy(zi)” {1 = Fy(ai)} ™ (1)
j=1
For simple notations, we write F'(a, 3, z;) = ;7:1 a; Fi(zi;)P {1 - Fj(xij)}l—ﬁj. Since,

generally, the space of mean response is a continuous interval, we assume that the distri-
bution function F), is absolutely continuous. Suppose that the F,, and F}’s are known and
some necessary parameters for these distribution functions are predetermined. Then, we
have y; = F; ' {F(a, 8, 2;)} and, from the equation y; = b'(6;) = h™1(6s),

0; = h’(.ul) =h [Fu—l {F(ah@7wi)}] = h(OC,,B,:L'i)-
The likelihood function is given by
L(a,B;y,X) = exp | D a™ () {mih(er, B,:) — b(h(ax, B,z:))}| , (2)
i=1
where X = (x3,...,Zy).
The proposed models can be practically implemented by Bayesian framework rather than

Frequentist framework. The book edited by Dey, Ghosh, and Mallick (2000) discusses infer-
ences for generalized linear models and some extended models from a Bayesian point of view.
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Many theories and applications discussed in this book can be also applied to the proposed
models with a little modification. In this paper, we investigate procedures to estimate the
parameters from a Bayesian perspective and also discuss the selection of moderate functions
F, and F}’s.

3. Bayesian Inferences

In order to perform Bayeisan inference, priors for o and 3 are required. The prior
considered for the weight parameter « is the Dirichlet distribution with parameter a =
(a1,--.,a,)T. The product of independent Bernoulli distributions with the success prob-
ability b = (bl,...,bp)T is a naive choice of the prior for the effect parameter 8. Then,
assuming o and 3 are independent, the posterior of a and 3 is written as

= P 2-1 b, \”
7(a, Bly, X) x exp Za_l(¢i) {yihle, B, i) — b(h(a,ﬂ,az,—))}] H {0‘;]/ (ﬁ) } .

=1

This posterior is not analytically tractable. Gibbs sampling is a useful technique which
generates samples from the posterior for implementation of the Bayesian model fitting. It
requires sampling from the full conditional distributions;

oY (¢s) {wih(or, B,x:) — b(h(a, B, @)} + Y _(a;/2 — 1) log(a;)

1 j=1

m(al|B,y,X) o« exp

N

1

Il

-

Il
—

m(Bla,y,X) o exp

a™1(6:) {yih(en B,@:) — blh(a, B,z:)} + Y B log (1 . b->
j=1 j

K

However, neither 7(c|-) nor m(3|-) are standard conditionals, so that an efficient simulation
algorithm should be applied to generate samples. We discuss Metropolis-Hastigs algorithm
for the proposed models.

It is necessary that a suitable candidate generating density is specified to implement the
Metropolis-Hastigs algorithm. Let ¢%*(:|a*) and qf(-w*) be candidate generating densities
for o given o* and for (3; given 3*, respectively. Then, the sampling algorithm is as follows;

1. Initialize a(® = (a§0), el ,a,(,o))T and ﬁ(o) = (ﬂp), - ,ﬁ;o))T;
2. Repeat fort=1,...,N.

(a) Sample a point a* from ¢*(-|a*=1)) and a uniform(0,1) random variable U;

(b) Compute the acceptance probability

m(a*]8% Y, y, X)g*(alt-D|a*) )

(t—-1) Y\ s
(e ,a*)=min| 1,
( ) ( m(at-1]8%Y, y, X)g*(a*|alt-D)

(c) FU < +*(a=D, a*), set a?) = a*; Otherwise, set a!) = alt=1;

(d) Repeat for j =1,...,p,
i. Sample a point §* from q]@(.lﬁj(t*l));
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i, If g* = ﬁ](.t_l), set ﬁj(-t) = (*, Otherwise
A. Sample a uniform(0,1) random variable U and compute the acceptance
probability
* -1 *
-1 _ (B*la®, 8y, X)gd (8 V|6;)
—1 Z
(B Ve, 8P v, X)q5 (8418 7Y)

b

B. IfU < ’Yﬁ(ﬂj('t_l),ﬂ*), set ﬂj(-t) = *; Otherwise set ﬁj(.t) = ﬂ](.t_l);

where ﬁ (t) 5= (6; (t) ﬂ(t) ]111), R ;t‘l)) comprises all of 3 except §; at the t-th
repetltlon and the full condltlonal distribution of §; is given as

7r(/Bj|aa/3(—j)1yv X exp Za ¢1 {yz aaﬁami)_b(h(aaﬂvmi))}+ﬁj log(lijb>] .
J

4. Selection of Link Distribution Function

The link distribution function connects the mean response p and a weighted linear com-
bination of explanatory distribution functions. If the information is quite limited, the con-
jugate family can be employed as a proper link distribution function since, according to the
Pitman-Koopman Lemma, conjugate priors can only be found in exponential families and
the parameter space (2 is consistent with the support of conjugates. Then, the resultant link
distribution function is written as F,(u) = F'(u;-), where -y is the vector of hyperparameters
corresponding a conjugate prior.

Although the conjugate distribution leads to a well-defined link distribution function,
we do not guarantee that it is a well-behaved link distribution function. For improvement
of fitting data, we consider two classes of link distribution functions indexed by a shape
parameter \. Let (v, \) be an increasing transformation from [0,1] to [0,1], for instance,
¥(v,\) = v* for A >0, and

A {w+ 1) =1} /(2 —1), iEX#Q
(v, A) = { log(v + 1)/ log(2), if A=0. )

Other examples for the 1 are IB(v; A, k) and IB(v; k, \), for a fixed k, where IB(v; ¢, d) stands
for the incomplete beta function associated with the beta density with parameters ¢ and d
evaluated at v. Then, the first class of link distribution functions takes the form

Fu(u) = ¢~ H{Fy(u), A}, (4)

where F,(+) is an arbitrary distribution function with density function supported on §) and
is sometimes indexed by unknown parameters v = (7, .. ,’yq)T. The second class of link
distribution function has the form F,(u) = F,{¢(u, )}, where ¢(u,A) is an increasing
transformation mapping of © into Q. When Q = R* or {2 = R, the modulus transformation
introduced by John and Draper (1980) and the extended power transformation by Yeo and
Johnson (2000) are appropriate for this purpose. Suppose () is the prior density functions
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of X\. Specifying a suitable proposal density A, we can implement the Metropolis-Hastigs
algorithm mentioned in Section 3.

In Bayesian literatures, semiparametric link functions using nonparametric specifications
have been extensively studied, for instance, Mallick and Gelfand (1994) and Newton, Czado,
and Chappell (1996). A mixture model is often employed to specify the link function in gen-
eralized linear models. For the proposed model, the nonparametric structure assumes that
F,(") is a random draw from F, where F, is a wider class of distribution functions. A
mixture model can be also considered in which a dense class of mixtures of standard dis-
tributions, {F®}, is modelled for F,(u) = ¥;_; wF®(u), where w; > 0 are the mixing
weights, Z;;l w; = 1. If w; = 1 for a particular [, the mixture model reduces to a non-
parametric specification. Otherwise, this is a semiparametric specification. Usually, the
semiparametric specification requires an awkward computation of quantiles and, further,
the identifiability is doubted when w’s are unknown and should be estimated with o and 3,

simultaneously.
5. Selection of Explanatory Distribution Functions

Suppose that Fj*(-) is a proper explanatory distribution for explaining the relationship
(1). Discrete mixtures of beta densities provide a continuous dense class of models for
densities on [0,1]. This implies that an unknown distribution function can be modelled by
a mixture of beta distribution functions. Let F]p(-) be a centering distribution function for
F (). We assume that these parameters can be chosen or given so that the resultant F()
is well-behaved. Since IB(F’ ]Q(-); ¢,d) provides a rich class of models which describes patterns
of dependency of i on z according to ¢ and d, we can approximate that

L;
Fy(u) =Y wiIB(F)(w);cr,dy),
=1

where L; is the number of mixands and w;’s are the mixing weights, w; > 0 and Zszjl w; = 1.

Since the specification of L, w = (wy,...,wr)T, ¢ = (c1,...,¢1)T, and d = (da,...,d)T
is too much to attempt, following Mallick and Gelfand (1994), we fix L, ¢, and d and let
only w be random given L. The ¢ and d are chosen to provide a set of beta densities which
blanket [0,1], for instance, ¢ = ol and d; = (L +1 1), 1 =1,2,...,L where o is either
estimated or given. Two types of priors for w are available, the Dirichlet and the multino-
mial distribution. The Dirichlet distribution leads to a semiparametric setting, while the
multinomial distribution leads to a nonparametric specification. In practice, the multino-
mial distribution is preferable because the Dirichlet distribution deserves a heavy job for the
implementation for large p and a complex interpretation for the relationship between p and
covariates.

6. Example of Binary Response Data

Milicer and Szczoka (1966) analyzed data determining the age of menarche of a sample
of 3918 Warsaw girls in 1965. Guerrero and Johnson (1982) obtained a remarkable improve-
ment using a probit model where the Box-Cox transformation is taken to the explanatory
variable and a normal distribution is assumed for the transformed variable.
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During the analyses, we set the uniform (0,1) as the link distribution function F.(u).
Four different (v, \)’s, v(Identity), v*(Power-1), IB(v;1, ), and equation (3) (Power-2),
are considered to improve the fit. An exponential prior was employed for the parameter
A of Power-1, and IB, and a normal for Power-2. The centering distribution was assumed
to be uniform (9,18) and the number of mixands for the explanatory distribution L = 5,
respectively. The prior distribution of mixing weights was a multinomial distribution with
5 categories having the same success probabilities.

Table 1: Summary of MCMC results for ¥'s.

Model selection Parameter estimation Pearson’s
Jé) w A (s.d) g (s.d.) X2
Identity 1 3 . 2.16(0.14) 161.05
Power-1 1 1 11.44 (0.53) | 0.98(0.04) 13.47
IB(1,") 1 2 0.30 (0.02) | 5.69 (0.60) 15.35
Power-2 1 2 5.77 (0.26) | 1.76 (0.10) 24.14

Table 1 shows a summary of results based on a run of 200,000 iterations of MCMC with
the first 100,000 discarded as burn in. With the maximum likelihood estimates, Pearson’s X?
statistics for logistic, probit, and cloglog regression are 21.31, 21.74, and 190.93, respectively
and we see that the proposed models with Power-1 and IB(1,-) much improve the fitting of
data. The exploration of some figures shows that the reductions in Pearson’s X? of Power-1
and IB(1,) are obtained at low parts of ;1 comparing with the logistic regression.
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