• 제목/요약/키워드: Inertia rotatory effect

검색결과 23건 처리시간 0.027초

회전관성 효과를 고려한 차륜의 동특성 (Dynamic characteristics of train wheel with considering the effects of rotatory inertia)

  • 김광식;박문태
    • 오토저널
    • /
    • 제9권1호
    • /
    • pp.49-56
    • /
    • 1987
  • This study is a part f the research on the coupled vibration of train wheel with stepped thickness and rail. The research was conducted for the purpose of examining the dynamic characteristics of train wheel which considered the effect of rotatory inertia and preventing the vibrations of the high speed railway. The In-plane compressive stresses were computed by the rotation of train wheel and the reaction depending on the condition of rolling. The equation of transverse vibration of the train wheel was obtained by Lagrange's equation. As a result of study, it is known that the effect of rotatory inertia and the increment of thickness ratio, h over bar decrease frequency but the increment of radius ratio, r over bar increase frequency.

  • PDF

Timoshenko 이론에 의한 불연속 변단면 포물선 아치의 자유진동 해석 (Free Vibration Analysis of Stepped Parabolic Arches with Timoshenko's Theory)

  • 오상진;진태기;모정만
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.942-947
    • /
    • 2004
  • The differential equations governing free, in-plane vibrations of stepped non-circuiar arches are derived as nondimensional forms including the effects of rotatory inertia, shear deformation and axial deformation. The governing equations are solved numerically to obtain frequencies and mode shapes. The lowest four natural frequencies and mode shapes are calculated for the stepped parabolic arches with hinged-hinged, hinged-clamped, and clamped-clamped end constraints. A wide range of arch rise to span length ratios, slenderness ratios, section ratios, and discontinuous sector ratios are considered. The effect of rotatory inertia and shear deformation on natural frequencies is reported. Typical mode shapes of vibrating arches are also presented.

  • PDF

Leipholz 기둥의 안정성에 미치는 자유단의 탄성구속과 말단질량의 영향 (Influence of Elastic Restraints and Tip Mass at Free End on stability of Leipholz Column)

  • 윤한익;박일주;진종태;김영수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 춘계학술대회논문집; 부산수산대학교, 10 May 1996
    • /
    • pp.309-315
    • /
    • 1996
  • An analysis is presented on the stability of elastic cantilever column subjected to uniformly distributed follower forces as to the influence of the elastic restraints and a tip mass at the free end. The elastic restraints are formed by both the translational and the rotatory springs. For this purpose, the governing equations and boundary conditions are derived by using Hamilton's principle, and the critical flutter loads and frequencies are obtained from the numerical evaluation of the eigenvalue functions of this elastic system. The added tip mass increases as a whole the critical flutter load in this system, but the presence of its moment of inertia of mass has a destabilizing effect. The existence of the translational and rotatory spring at the free end increases the critical flutter load of the elastic cantilever column. Nevertheless their effects on the critical flutter load are not uniform because of their coupling. The translational spring restraining the end of cantilever column decreases the critical flutter load by coupling with a large value of tip mass, while by coupling with the moment of inertia of tip mass its effect on the critical flutter load is contrary. The rotatory spring restraining the free end of cantilever column increases the critical flutter load by coupling with the tip mass, but decreases it by coupling with the moment of inertia of tip mass.

  • PDF

Leipholz 기둥의 안정성에 미치는 자유단의 탄성구속과 말단질량의 영향 (Influence of Elastic Restraint and Tip Mass at Free End on Stability of Leipholz's Column)

  • 윤한익;박일주;김영수
    • 소음진동
    • /
    • 제7권1호
    • /
    • pp.91-97
    • /
    • 1997
  • An analysis is presented on the stability of an elastic cantilever column having the elastic restraints at its free end, carrying an added tip mass, and subjected to uniformly distributed follower forces. The elastic restraints are formed by both a translational spring and a rotatory spring. For this purpose, the governing equations and boundary conditions are derived by using Hamilton's principle, and the critical flutter loads and frequencies are obtained from the numerical evaluation of the eigenvalue functions of this elastic system. The added tip mass increases as a whole the critical flutter load of the elastic cantilever column, but the presence of its moment of inertia of mass has a destabilizing effect. The existence of the translational and rotatory springs at the free end increases the critical flutter load of the elastic cantilever column. Nevertheless, their effects on the critical flutter load are not uniform because of their coupling. The translational spring restraining the free end of the cantilever column decreases the critical flutter load by coupling with a large value of tip mass, while by coupling with the moment of inertia of tip pass its effect on the critical flutter load is contrary. The rotatory spring restraining the free end of the cantilever column increases the critical flutter load by coupling with the tip mass, but decreases it by coupling with the moment of inertia of the tip mass.

  • PDF

변단면 변화곡율 캔틸레버 아치의 자유진동 (Free Vibrations of Tapered Cantilever Arches with Variable Curvature)

  • 이병구;이용수;오상진
    • 소음진동
    • /
    • 제10권2호
    • /
    • pp.353-360
    • /
    • 2000
  • Numerical methods are developed for calculating the natural frequencies and mode shapes of the tapered cantilever arches with variable curvature. The differential equations governing the free vibrations of such arches are derived and solved numerically, in which the effect of rotatory inertia is included. The parabolic shape is chosen as the arch with variable curvature while both the prime and quadratic arched members are considered as the tapered arch with variable curvature while both the prime and quadratic arched members are considered as the tapered arch. Comparisons the natural jfrequencies between this study and finite element method SAP 90 seve to validate the numerical method developed herein. The lowest four natural frequencies are reported as a function of four non-dimensional system parameters. The effects of both the rotatory inertia and cross-sectional shape are reported. Also, the typical mode shapes of stress resultants as well as the displacements are reported.

  • PDF

직교좌표계에 의한 아치의 자유진동 (Free Vibrations of Arches in Rectangular Coordinates)

  • 이병구;이태은;안대순;김영일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.971-976
    • /
    • 2002
  • The differential equations governing free vibrations of the elastic arches with unsymmetric axis are derived in rectangular coordinates rather than in polar coordinates, in which the effect of rotatory inertia is included. Frequencies and mode shapes are computed numerically for parabolic arches with both clamped ends and both hinged ends. Comparisons of natural frequencies between this study and SAP 2000 are made to validate theories and numerical methods developed herein. The convergent efficiency is highly improved under the newly derived differential equations in Rectangular coordinates. The lowest four natural frequency parameters are reported, with and without the rotatory inertia, as functions of three non-dimensional system parameters: the rise to chord length ratio, the span length to chord length ratio, and the slenderness ratio. Also typical mode shapes of vibrating arches are presented.

  • PDF

불연속 변화단면 아치의 자유진동 해석 (Free Vibration Analysis of Arches with Thickness varying in a Discontinuous Fashion)

  • 이병구;오상진;모정만;김현상
    • 소음진동
    • /
    • 제3권4호
    • /
    • pp.331-339
    • /
    • 1993
  • The main purpose of this paper is to present an analytical method for free vibration of arches with thickness varying in a discontinuous fashion. The ordinary differential equations governing the free vibration of these arches are derived as nondimensional forms including the effect of rotatory inertia. The governing equation are solved numerically for the circular and sinusoidal arches with hinged-hinged-hinged end clamped-clamped end constraints. As the numerical results, the effect of rotatory inertia on the natural frequencies is reported. The lowest four natural frequencies are presented as the functions of four nondimensional system parameters; the rise to span length ratio, the slenderness ratio, the section ratio and the ratio of discontinuous section.

  • PDF

1차원 변화단면을 갖는 양단고정 원호아치의 자유진동 해석 (Free Vibrations of Clamped Circular Arches with Linear Variable Cross-Section)

  • 이병구
    • 대한토목학회논문집
    • /
    • 제9권4호
    • /
    • pp.1-8
    • /
    • 1989
  • 아치가 진동할 때 발생하는 변위에 의한 합응력과 질량을 갖는 아치요소에 발생하는 관성력에 대한 동적 평형방정식을 이용하여 회전관성을 고려한 변단면 원호아치의 자유진동을 지배하는 미분방정식을 유도하였다. 이 미분방정식을 1차원으로 변화하는 원형단면을 갖는 양단고정 아치에 적용시키고 시행착오적 고유치문제와 Runge-Kutta method를 이용하여 수치해석하였다. 수치해석 결과로 회전관성이 고유진동수에 미치는 영향을 고찰하고, 고유진동수와 단면비와의 관계, 고유진동수와 세장비와의 관계 및 고유진동수와 중심각과의 관계를 그림에 나타내었다.

  • PDF

구형 중공단면을 갖는 원호아치의 자유진동 해석 (Free Vibration Analysis of Circular Arches with Rectangular Hollow Section)

  • 이태은;이병구;박광규;윤희민
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.50-53
    • /
    • 2008
  • The differential equations governing free vibrations of the elastic arches with rectangular hollow section are derived in polar coordinates, in which the effect of rotatory inertia is included. Natural frequencies is computed numerically for circular arches with both clamped ends and both hinged ends. The lowest four natural frequency parameters are reported, with the rotatory inertia, as functions of three non-dimensional system parameters: the breadth ratio, the thickness ratio and the shape ratio.

  • PDF

직교좌표계에 의한 아치의 자유진동 해석 (Free Vibrations of Arches in Rectangular Coordinates)

  • Lee, Tae-Eun;Ahn, Bae-Soon;Kim, Young-Il;Lee, Byoung-Koo
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.394.2-394
    • /
    • 2002
  • The differential equations governing free vibrations of the elastic arches with unsymmetric axis are derived in the rectangular coordinates rather than in polar coordinates, in which the effect of rotatory inertia is included. Frequencies and mode shapes are computed numerically for parabolic arches with both clamped ends and both hinged ends. Comparisons of natural frequencies between this study and SAP 2000 are made to validate theories and numerical methods developed herein. (omitted)

  • PDF