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Free Vibrations of Arches in Rectangular Coordinates
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ABSTRACT

The differential equations governing free vibrations of the elastic arches with unsymmetric axis are
derived in rectangular coordinates rather than in polar coordinates, in which the effect of rotatory inertia is
included. Frequencies and mode shapes are computed numerically for parabolic arches with both clamped
ends and both hinged ends. Comparisons of natural frequencies between this study and SAP 2000 are made to
validate theories and numerical methods developed herein. The convergent efficiency is highly improved
under the newly derived differential equations in Rectangular coordinates. The lowest four natural frequency
parameters are reported, with and without the rotatory inertia, as functions of three non-dimensional system
parameters: the rise to chord length ratio, the span length to chord length ratio, and the slenderness ratio. Also

typical mode shapes of vibrating arches are presented.

1. INTRODUCTION

Arches are one of the most important basic
structural units as well as the beams, columns and
plates. Most complicated structures consist of only
these basic units and therefore it is very attractive
research subject to analysis both the static and
dynamic behavior of such units including the
arches.

The problems of free vibrations of arches have
been the subject of much work due to their many
practical applications. Furthermore, characteristics
of free vibrations of structures including arches are
definitely unique, which are consequently used as
an assessment index in evaluating the soundness of
structures.

The governing equations and its significant
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historical literature on the free in-plane vibrations
of elastic arches have been reported in many
references for more than three decades. Background
material for the current study was critically
reviewed by Lee and Wilson. Briefly, such works
included studies of the non-circular arches with
predictions of only the lowest frequency in flexure
by Romanelli and Laura®, and in extension by
Wang and Moore™; studies of circular arches with
predictions of the higher frequencies by Veletsos et
al®; studies of arches with variable curvature of
the higher frequencies in flexure by Lee and
Wilson®” and Oh et al®; and the effects of
transverse shear and rotatory inertia on natural
frequencies of arches by Wilson and Lee'®.

This paper has three main purposes: (1) to
present the differential equations for free, planar
vibrations of arches with variable curvature and
unsymimetric axis, where all equations are derived
in rectangular coordinates rather than in polar
coordinates; (2) to include the effect of rotatory
inertia in the differential equations; and (3) to
illustrate the numerical solutions to the newly
derived equations for the parabolic arches.
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2. MATHEMATICAL MODEL

The geometry and nomenclature of the arch,
placed in the rectangular coordinates (x,y), with
variable curvature and unsymmetric axis are shown
in Fig. 1. The geometric variables are defined as
follows.

L: Span length

{ : Chord length

h: Rise

v : Tangential displacement
w: Radial displacement

v : Rotation of cross-section
p : Radius of curvature

€ : Inclination of p with x -axis

v /— arch axis, y=y(x)

N

hinged/ \\ h
hJ
clamped

hinged/
clamped
> L

& Ll

€ >

Fig. 1 Geometry arch and its variables

The shape of parabolic arch, which is chosen as
the object arch with variable curvature herein, is
expressed in terms of (/,4) and the coordinate x

in the range from x=0 to x=L.Thatis,

y=—(4h)x(x-1), 0Sx<L 1)

A small element of the arch is shown in Fig. 2
in which are defined the positive directions for the
axial force N, the shear force O, the bending

moment M , the tangential inertia force F,, the
radial inertia force F,, and the rotatory inertia
couple C, . Treating the inertia forces and the

inertia couple as equivalent static quantities, the
dynamic equilibrium equation of the element are

N'+Q+pF,=0 2
Q' -N+pF, =0 3)
pM'-Q-C, =0 4)
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where (') isthe operator d/dé.

0+d0 N+dN

F,

Fig. 2 Element subjected to stress resultants
and inertia forces

The equations that relate N, M and ¢ to
the displacements v and w” are

N =EAp~'[(vV' + W)+ p2(W" + w)] (5)
M =EAr*p (W +w) 6)
w=p"(W-v) ™

where E is Young’s modulus, A is the cross-
sectional area and r is the radius of gyration of
cross-section.

The arch is assumed to be in harmonic motion,
or each coordinate is proportional to sin(w;?)

where @, is the ith circular frequency and ¢ is

time. Then the tangential and radial inertia forces,
and rotatory inertia couple per unit arc length are,
respectively,

F,=mw,’v 8)
F,=mao;'w )
C =ma),.2r21// =ma),.2r2p_1(w’—v) (10)

w

where m is the mass per unit arc length.

When Egs. (5) and (6) are differentiated once,
the results are

N' = EAp ' [(V"+ W) +rip2p'(w" + w) an
= P +w)=3rpT p' (W + w)]
M' =—EAr*p [(W"+ W) =2p"' p'(W" + w)]
(12)
When Egs. (10) and (12) are substituted into Eq.
(4), then
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-1 ’
Q =p M- Cl/l
=—EArip[w"+ w)-2p7 p'w" + w)] (13)
—ma)izrzp‘l W' -v)

The following equation is
differentiating Eq. (13).

obtained by

Ql — _EArzp—3 [(wmr + W") _ Sp—lpl(wm + W')
+2p7 @4p7 p'? = pYW" + W)]
— Rma’r* p ' [(w" =)= p~' p'(W = V)]

(14)

From Fig. 1, it is seen that the inclination & is
related to the coordinate x. By the mathematical
definition,

0 =nx/2~tan" (dy/dx)

15
=7 /2~tan~ [-(4hl"?)(2x - 1)] (1)

When Eq. (15) is differentiated, the result is

do = BhIH)[1* +16h*(2x - 1)1 dx (16)
Define the following arch parameters.

g, =(0.125h7 1)1 +16R* 2x-1?*]  (17.1)
g, =(Bh™)(2x~1) (17.2)
g; =16hl™ (17.3)

From Eq. (16) with Egs. (17.1)-(17.3), the
following differential operators are obtained.

d d
L _, L 18
40 gldx (18)
>, d d '
dTrZ:g' F‘*glgz;,; (19)
J° L d? ) 2
— =& 5+38 &>
do dx Zx (20)
+g1(g1g3+g22)zx‘

d* s d? 3 d? 2
—=g, —+6 —+ 4
79" & I g1 &2 e 8" (42,g;

: 1)

d d
+7g,0)—+ 4 +g,0)—
8 )——5+818,(48:83 +&57) ,

The radius of curvature p at any point of the
parabolic arch is expressed as Eq. (22). Also, its
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derivatives p' and p" can be expressed in terms
of x by using Eq. (22) with Egs. (18) and (19) as
Egs. (23) and (24), respectively. That is,

p=[l+(dy/de)*T'* @y dx®)™

(22)

= (l/ﬁ)g13/2g31/2
pr — (3\/5/4)g13/2g2g3”2 (23)
P =(2/8)" g (28, g5 +3g,7) (24)

Now cast the differential equations of free
vibration for the arch into non-dimensional form by
introducing the non-dimensional parameters as
follows.

E=x/1 25)
n=yll (26)
f=hil 27
e=L/I (28)
A=v/l (29)
S=wll (30)
s=1/r (1)

Here the coordinates (x,y), the rise A, the span

length L, and the displacements v and w are
normalized by the chord length /, and s is the
slenderness ratio.

When Egs. (5), (9), and (14) together with Eqgs.
(17)-(31) are used in Eq. (3), the result is Eq. (32).
Also, when Egs. (8), (11) and (13) are combined
with Egs. (2), the result is Eq. (33). That is,

oY = a,é’iﬁ +(a, +Rc,2a3)§“

+(a, + Re2ag)8' +(ag +¢;2a;)6 (32)
+ c,-2 (ag + Rag)A' + Rcizam/l
A =q,5" + (a,j +Re;%a)d" +a,d (33)
+a;sA +¢;” (ayg + Rayy)A
where () is the operator d/df, and the
constants of a, through a,, are as follows.
a, =1.5b"'b, (34.1)
a, =—-b 2 (64 fb, +2.5b," b, +2) (34.2)
a,=-8fs7b, (34.3)
a, =b, b, (56 /b, —11.5b,> +b, +5.5)  (34.4)
as; =4f57°b, (34.5)
ag =-b " (85%h> +18b," —b,) (34.6)



a, =64 b} (34.7)
ag =8 f5° (34.8)
a, =857 (34.9)
a, ==12f572b, b, (34.10)
“ay, =0.187517's72b, b, (34.11)
a, =0.1875f 7 72, *b," b, (34.12)
a,=s7'p" (34.13)
ay, =1.55,7b,(0.125 '8, +1) (34.14)
a5 =0.5b,"'b, (34.15)
a,s =-8fs7b, (34.16)
a, ==sp7? (34.17)
where,
b =0.1251+16 £ (2£ -1)?] (35.1)
b,=8f(2¢-1) (35.2)
b, = 6[1+ 64 2(2£ -1)?] (35.3)

The non-dimensional frequency parameter is
defined as

¢ =aor’! lz,/m/(EA)

(36)
=’ JAIED), i=1,2,3,4,-
where y is the mass density.

Now consider the boundary conditions. At a
clamped end (x=0 or x=L), the boundary
conditions are v=w=y =0 and these relations

can be expressed in the non-dimensional form as

A=0 at £=0 or £=e 37
60=0 at £=0 or £=e (38)
5'=0 at £=0 or £=e (39)

Here, the latest Eq. (39) implies that the rotation of
cross-section  expressed in Eq. (7) is zero.

At a hinged end (x=0 or x=L), the boundary
conditions are v=w=M =0 and these relations
can be expressed in the non-dimensional form as

A=0 at £=0 or E=e (40)
5=0 at £=0 or E=e (41)
5% +b7'b,6'=0 at £=0 or £=e (42)

Also, the latest Eq. (42) implies that the bending
moment M expressed in Eq. (6) is zero.
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3. NUMERICAL METHODS AND
DISCUSSION

Based on the above analysis, a general
FORTRAN computer program was written to
calculate the frequency parameters ¢; and the
corresponding mode shapes A =24,(£), § = §,(&)
and y =y,;(£). The numerical methods described
by Lee et al® were used to solve the differential
Eqgs. (32) and (33), subjected to the end constraint
Egs. (37)-39) or Egs. (40)-(42). First, the
Determinant Search method combined with the
Regula-Falsi method was used to obtain the
frequency parameter c¢;, and then the Runge-

Kutta method was used to calculate the mode
shapes A, 6 and y .

Four lowest values of c¢;(i=1,2,3,4) and the

corresponding mode shapes were calculated in this
study. Numerical results, given in Table 1 and Figs.
3 through 6, are now discussed. The first series of
numerical results are shown in Table 1. These
studies served as an approximate check on the
analysis presented herein. For comparative purposes,
finite element solutions based on the commercial
packages SAP 2000 were used to compute the first
four frequency parameters ¢; for two end

constraints. The results showed that 100 three-
dimensional finite frame elements were necessary
to match within a tolerance of about 2.5% values of
¢; computed by solving the governing differential
equations. It can be concluded that the present study
gives accurate results.

Table 1 Comparisons of ¢; between this study

and SAP 2000

Geometry ; Frq. parameter c; Ratio*

This study | SAP2000
Both clamped ends, 1 60.13 60.31 0.997
f£=03,e=0.28, 2 80.12 80.92 0.990
3 1335 136.9 0.975
s=50,R=1 4 180.4 181.1 0.996
Both hinged ends, 1 40.34 40.95 0.985
f=03,e=08, 2 79.07 80.43 0.983
3 100.6 100.9 0.997
s=50,R=1 4 170.5 173.6 0.982

* Ratio=(This study)/(SAP 2000)

It is shown in Fig. 3, for which ¢=0.8, s=50,
that each frequency curve of second modes of both
clamped ends and both hinged ends reaches a peak
as the horizontal rise to chord length ratio f is

increased while the other frequency parameters
decrease as f is increased. Further, it is observed for
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these unsymmetric arch configurations that two
mode shapes can exist at a single frequency, a
phenomena that was previously observed only for
symmetric arch conﬁgurations“). For both hinged
ends, the first and second modes have the same
frequency ¢, =c, =53.06 at f=0.153 (marked
as ). However, the frequency curves of first and
third modes for both clamped ends come close each
other but not close.

300
I e=0.8, s=50 1
- : both clamped ends ]
VRN — : both hinged ends ]
i i=1, 2, 3, 4 from bottom to top 1
200 - ]

G 150

100

50

Fig. 3 ¢; versus f curves

It is shown in Fig. 4, for which f=0.3,
s =150, that the frequency parameters c¢; decrease
as the span length to chord length ratio e is
increased. Particularly, it is noted that the frequency
parameters of third and fourth modes are more
significantly decreased as e gets smaller value.

It is shown in Fig. 5, for which f=0.3,

e=10.8, that the frequency parameters c; increase,

and in most cases approach a horizontal asymptote,
as the slenderness ratio s is increased. Further, it

1000 T T
" =0.3,s=50
: both clamped ends ]
800 K ----=--- : both hinged ends .
H\ i=1, 2, 3, 4 : from bottom 1o top
600

Ci

400

PRI TSR

200

ot o 1y 1 T
025 050 075 100 125 150
e

Fig. 4 c; versus e curves

is seen from all of Figures mentioned above that
frequencies of both clamped ends are always
greater than those of both hinged ends, other
parameters remaining the same.

S —
[ f=0.3, e=0.8 1
[ : both clamped ends ]
S : both hinged ends J

300 & i=1, 2, 3, 4 : from bottom to top

S 200

100

LIRS LI S R R S B B I
.,

&\ <

\

D

VS S HN BT

150 200

>

Fig. 5 ¢, versus s curves

Figure 6 shows the computed mode shapes
with f=0.3, e=0.8, s=50, for both clamped
ends and both hinged ends. From these figures, the
amplitude and the positions of maximum amplitude
and nodal points of each mode can be obtained,
which is widely used in the fields of vibration
control.

f=03, e=0.8, s=50

------- : undeformed axis
—— . both clamped ends
— —— : both hinged ends

£=0
Fig. 6 Example of mode shapes



4. CONCLUDING REMARKS

This study deals with the free vibrations of
arches with unsymmetric axis. The governing
differential equations are derived in rectangular
coordinates rather than in polar coordinates, in
which the effect of rotatory inertia on the natural
frequency is included. The differential equations,
subjected to parabolic arches, newly derived herein
were solved numerically to calculate both natural
frequencies and mode shapes. For validating the
theories and numerical methods presented herein,
the frequency parameters obtained in this study are
compared to those of SAP 2000. As the numerical
results, the relationships between the frequency
parameters and the various non-dimensional arch
parameters are reported, and typical mode shapes
are presented.
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