• Title/Summary/Keyword: Inertia mass

Search Result 335, Processing Time 0.024 seconds

An Investigation into the Application of the Modal Analysis to the Calculation o Transverse Vibration Responses of Ship Hulls (선체횡진동응답(船體橫振動應答)의 Model Analysis에 관한 고찰(考察))

  • S.B.,Han;K.C.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.2
    • /
    • pp.29-34
    • /
    • 1984
  • The degree of deviation from the orthogonality relations of the actual ship's natural modes and its effects on the vibration responses are numerically investigated. The results show that, for the practical application of the modal analysis, it is not an essential requirement in utilization of the expansion theorem to assume the added mass being constant regardless of the mode shapes, or to take the dry hull's natural modes. That is, it is more reasonable to take the actual ships natural modes as the set of the normal modes and to get the solution of the normal coordinates equation by neglecting both the inertia coupling and the stiffeness coupling.

  • PDF

A Study on the Vertical, Horizontal and Torsional Vibration of Ship(1st Report) (배의 상하(上下), 수평(水平) 및 비틂진동(振動)에 관(關)하여(제1보)(第1報) -Box형(型) Barge의 상하진동(上下振動)에 대(對)하여-)

  • Sa-Soo,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.8 no.2
    • /
    • pp.1-12
    • /
    • 1971
  • This paper describes, firstly, on analytical method of computing the eigenvalues of vertical vibration of ships, taking into account for the distribution of hull weight including added mass and the effect of shear deflection and rotary inertia. The frequency equation is solved by Galerkins method into form of numerical integration. Applying the above described equation, model experiment of vertical vibration was carried out in order to varify the validity of the analytical method of vertical vibration. The model, which was made of acrylite plate, was ship-shaped wall-sided vessel with bulkheads, deck openings, and fore and after peak tank at both ends. The results of experiments carried out both in air and on water showed that the observed natural frequencies and the observed patterns of natural modes of vibration were in good agreement with analytically calculated values for 2,3, and 4-node vibration.

  • PDF

Gravitational Wave Emission from Pulsars with Glitches

  • Kim, Jin-Ho;Lee, Hyung-Mok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.47.2-47.2
    • /
    • 2011
  • Gravitational waves from the pulsar glitch can be detected by next generation gravitational wave observatories. We investigate characteristics of the modes that can emit the gravitational waves excited by three different types of perturbations satisfying conservation of total rest mass and angular momentum. These perturbations mimic the pulsar glitch theories i.e., change of moment of inertia due to the star quakes or angular momentum transfer by vortex unpinning at crust-core interface. We carry out numerical hydrodynamic simulations using the pseudo-Newtonian method which makes weak field approximation for the dynamics, but taking all forms of energies into account to compute the Newtonian potential. Unlike other works, we found that the first and second strongest modes that give gravitational waves are $^2p_1$ and $H_1$ rather than$^2f$. We also found that vortex unpinning model excites the inertial mode in quadrupole moment quite effectively. The inertial mode may evolve into the non-axisymmetric r-mode.

  • PDF

Performance Analysis of Pneumatic Device for Verification of Canard Deployment Performance (날개의 전개성능 확인을 위한 공압식 시험장치 성능 해석)

  • Lee, Donghoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.145-154
    • /
    • 2016
  • In this paper, a pneumatic device for the deployment performance verification of canards deployed by inertia has been designed and the performance of the pneumatic device has been proven through analysis and tests. The pneumatic conveying process, orifice opening process and piston movement process of the pneumatic device were investigated by using numerical methods. The orifice diameter, pressure in a pressure tank and type of gas were regarded as the main design parameters of the pneumatic device. The error rate between analysis and test results under the same conditions was within 4 %. The accuracy of numerical methods used in this study were validated.

A Study on the Dynamic Performance Behavior of Solid Oxide Fuel Cells with Stepwise Load Changes (갑작스런 부하 변동에 따른 고체산화물 연료전지의 동적 성능 거동 특성에 관한 연구)

  • Sohn Jeong Lak;Ro Sung Tack;Yang Jin Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.4 s.235
    • /
    • pp.477-484
    • /
    • 2005
  • Model fer the dynamic simulation of dynamic behaviors of a solid oxide fuel cell (SOFC) is provided. This model is based upon (1) coupled mass and heat transfer characteristics and (2) important chemical reactions such as electrochemical and reforming reactions in high temperature fuel cells such as SOFC. It is found that the thermal inertia of solid materials in SOFC plays an important role to the dynamic behavior of cell temperature. Dynamic characteristics of cell voltage, power, and chemical compositions with different levels of load change are investigated.

Design and Analysis of an Active Vibration Isolation System (능동형 제진 시스템의 설계 및 해석)

  • Moon, Jun-Hee;Pahk, Heui-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.647-650
    • /
    • 2004
  • The modeling of an active vibration isolation system is accomplished by using the equivalent spring constant, mass and rotational Inertia of each component. The detailed model of the actuation module is successful for describing its frequency-domain performance but also too complicated to implement it to actual system for control so that the order of the model is reduced up to the degree that preserves its characteristic in the low frequency range. The reduced model is suitable for identifying the unknown system parameters such as damping constants of components. The overall isolation system is described by using the reduced model of the actuation module. The accurate model ing and system parameter identification that is essential for the control of the active vibration isolation system is attained successfully.

  • PDF

Influence of fracture characters on flow distribution under different Reynold numbers

  • Wang, Jing;Li, Shu-Cai;Li, Li-Ping;Gao, Cheng-Lu
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.187-193
    • /
    • 2018
  • Water inrush through the destruction of water resisting rock mass structure was divided into direct water inrush, key block water inrush and splitting water inrush. In the direct water inrush, the Reynolds numbers has a significant effect on the distribution of the water flow and vortex occurred in the large Reynolds numbers. The permeability coefficient of the fracture is much larger than the rock, and the difference is between 104 and 107 times. The traditional theory and methods are not considering the effect of inertia force. In the position of the cross fracture, the distribution of water flow can only be linearly distributed according to the fracture opening degree. With the increase of Reynolds number, the relationship between water flow distribution and fracture opening is studied by Semtex.

Meshless local Petrov-Galerkin method for rotating Rayleigh beam

  • Panchore, Vijay
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.607-616
    • /
    • 2022
  • In this work, the free vibration problem of a rotating Rayleigh beam is solved using the meshless Petrov-Galerkin method which is a truly meshless method. The Rayleigh beam includes rotatory inertia in addition to Euler-Bernoulli beam theory. The radial basis functions, which satisfy the Kronecker delta property, are used for the interpolation. The essential boundary conditions can be easily applied with radial basis functions. The results are obtained using six nodes within a subdomain. The results accurately match with the published literature. Also, the results with Euler-Bernoulli are obtained to compare the change in higher natural frequencies with change in the slenderness ratio (${\sqrt{A_0R^2/I_0}}$). The mass and stiffness matrices are derived where we get two stiffness matrices for the node and boundary respectively. The non-dimensional form is discussed as well.

A Cultural Reading on Tapgol Park (탑골공원의 문화적 해석)

  • Park, Seung-Jin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.6
    • /
    • pp.1-16
    • /
    • 2003
  • This study seeks to find new strategies for the development of Tapgol Park and to identify Programs to promote this development. In addition, the study specifies the purpose and meaning of these efforts by revealing social aspects not apparent in the physical form of the site, and reading how these aspects influenced the development of Tapgol Park Because the focus of the study lies in reading cultural aspects of the site which have to be understood within the context of their social circumstances, the study drew materials from mass media such as newspapers and literary magazines, which best reflect these social aspects. Interpreting the over 100 you history of Tapgol Park in a cultural context, the study found a meaningful suggestion that such a small urban place located in a city forms a cultural identity in the course of communicating with its surrounding social situations. The change in the identity of Tapgol Park has been sensitive to changing social circumstances rather than the physical structure of the space. The original function of Tapgol Park as a traditional city park has gradually changed towards strengthening social functions, much like the character of an urban plaza. In the process of change the park developed a unique culture. This park culture, however, came not from the original design but from its close interactions with social circumstances changing over time. At the same time, the change in identity seen in Tapgol Park has not been fresh formed. It can be said that the inertia came into light with the potential powers under the place over the long history having been combined into the then social circumstances. In early 2002, the park re-opened, refurbished as one of the relics of the March 1st Movement. Investigating how cultural inertias that have been developing in various forms to date will change and be maintained in this new paradigm is an important assignment for researchers.

Optimal Design of Magnetically Levitated Flywheel Energy Storage System Based on System Stability Using Rigid-Body Model (강체모델 기반 시스템 안정성을 고려한 자기부상 플라이휠 에너지 저장장치의 최적 설계)

  • Kim, Jung-Wan;Yoo, Seong-Yeol;Bae, Yong-Chae;Noh, Myoung-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.283-289
    • /
    • 2010
  • Owing to the increasing worldwide interest in green technology and renewable energy sources, flywheel energy storage systems (FESSs) are gaining importance as a viable alternative to traditional battery systems. Since the energy storage capacity of an FESS is proportional to the principal mass-moment of inertia and the square of the running speed, a design that maximizes the principal inertia while operatingrunning at the highest possible speed is important. However, the requirements for the stability of the system may impose a constraint on the optimal design. In this paper, an optimal design of an FESS that not only maximizes the energy capacity but also satisfies the requirements for system stability and reduces the sensitivity to external disturbances is proposed. Cross feedback control in combination with a conventional proportional-derivative (PD) controller is essential to reduce the effect of gyroscopic coupling and to increase the stored energy and the specific energy density.