• Title/Summary/Keyword: Inertia mass

Search Result 336, Processing Time 0.025 seconds

Experiment for Seated Human Body to Vertical/Fore-and-aft/Pitch Excitation (착석자세 인체의 상하/전후/피치 가진 시험)

  • Kim, Jong-Wan;Kim, Ki-Sun;Kim, Kwang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.656-660
    • /
    • 2009
  • Various dynamic models of seated posture human body have been developed because the importance about the ride comfort assessment of vehicles is highly emphasized from day to day. The dynamic models of human body make possible the simulation of ride comfort assessment by applied to the vehicle dynamic model. Recently, the importance of ride comfort is also regarded to working vehicles such as excavators and the research of the ride comfort assessment for working vehicle is required. Only vertical vibration dominantly occurs on the seat of the private car driving with constant velocity. In contrast, vertical/fore-and-aft/pitch vibration seriously occurs on the seat of the working excavator. So, the dynamic models of seated human body applied to working vehicles should describe the dynamic characteristics for vertical/fore-and-aft/pitch direction. In this paper, the dynamic characteristics of seated human body are represented as apparent inertia matrix. The apparent inertia matrix is obtained by the vertical/fore-and-aft/pitch excitation of seated human body. 6 resonance frequencies are observed in apparent inertia matrix. This result can be applied to develop the dynamic model for seated posture human body.

  • PDF

Unsteady Vaporization of Burning Droplet at High Pressure Environments With Linear Acoustic Mode (강한 음향장에 구속된 고압 액적의 연소)

  • Kim, Sung-Yup;Shin, Hyun-Ho;Yoon, Woong-Sup
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1122-1127
    • /
    • 2004
  • an isolated droplet combustion exposed to pressure perturbations in stagnant gaseous environment is numerically conducted. Governing equations are solved for flow parameters at gas and liquid phases separately and thermodynamic parameters at the interfacial boundary are matched for problem closure. For high-pressure effects, vapor-liquid interfacial thermodynamics is rigorously treated. A series of parametric calculations in terms of mean pressure level and wave frequencies are carried out employing a n-pentane droplet in stagnant gaseous air. Results show that the operating pressure and driving frequency have an important role in determining the amplitude and phase lag of a combustion response. Mass evaporation rate responding to pressure waves is amplified with increase in pressure due to substantial reduction in latent heat of vaporization. Phase difference between pressure and evaporation rate decreases due to the reduced thermal inertia at high pressure. In addition to this, augmentation of perturbation frequency also enhances amplification of vaporization rate because the time period for the pressure oscillation is much smaller than the liquid thermal inertia time. The phase of evaporation rate shifts backward due to the elevated thermal inertia at high acoustic frequency.

  • PDF

Effects of Rotatory Inertia and Shear Deformation on Natural Frequencies of Arches with Variable Curvature (회전관성 및 전단변형이 변화곡률 아치의 고유진동수에 미치는 영향)

  • Oh, Sang Jin;Lee, Byoung Koo;Lee, In Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.673-682
    • /
    • 1997
  • The main purpose of this paper is to investigate the effects of rotatory inertia and shear deformation on the natural frequencies of arches with variable curvature. The differential equations are derived for the in-plane free vibration of linearly elastic arches of uniform stiffness and constant mass per unit length. The governing equations are solved numerically for parabolic, circular and elliptic geometries with hinged-hinged, hinged-clamped and clamped-clamped end constraints. For each cases, the four lowest frequency parameters are presented as functions of the two dimensionless system parameters; the arch rise to span length ratio, and the slenderness ratio.

  • PDF

Tension Control Using Adaptive PID Controller in the Two-Drum Winder Web Transport System (Two-Drum Winder 권취 공정 시스템에서의 적용 PID 제어기를 이용한 장력제어)

  • Park, Seung-Gyu;Lee, Dong-Bin;Yim, Hwa-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.9
    • /
    • pp.813-821
    • /
    • 2000
  • In this paper, we developed modeling of tension and speed dynamics for a two-drum winder in a three span continuous web transport system which had not been previously. Dynamic modeling of the time-varying nonlinear system was derived by considering the effect of the radii and mass moment of inertia in the unwinder and the two-drum winder through winding up the web. After linearizing it, we designed with a variable-gain a PID controller for tension control and a PI controller for speed. Simulation is carried out with the variation of radii and moment of inertia at high speed for the proposed tension control system with the two-drum winder and the variavle-gain a PID controller. Results show good performance of tension control during the speed change speed at a start-up and stop.

  • PDF

Diagnostic Imaging Features of Abdominal Foreign Body in Dogs; Retained Surgical Gauze (개에서 복강내 잔존한 거즈 이물의 진단영상)

  • Choi, Ji-Hye;Kim, Gye-Dong;Keh, Seo-Yeun;Jang, Jae-Yong;Choi, Hee-Yeon;Yoon, Jung-Hee
    • Journal of Veterinary Clinics
    • /
    • v.28 no.1
    • /
    • pp.94-100
    • /
    • 2011
  • This study was performed to describe the radiographic and ultrasonographic features of retained surgical gauze known as gossypiboma in 9 dogs. Female dogs (n = 8) were at higher risk and seven out of the eight cases had a history of ovariohysterectomy. Seven dogs were symptomatic and the most common clinical signs were vomiting, anorexia, and inertia. A palpable abdominal mass was detected in six dogs. Radiographic signs included a localized abdominal mass with soft tissue density (n = 7) or a mass containing speckled gas (n = 1). Ultrasonography showed a hypoechoic mass with a hyperechoic center (n = 4), or a homogeneous hypoechoic mass (n = 3). The remaining dogs (n = 2) showed an intestinal wall surrounding a hyperechoic center. Regardless of the characteristics of a mass, an acoustic shadowing was accompanied from the center of a mass in all dogs. Ultrasonography also revealed complications such as adhesion between a mass and adjacent organs, and peritonitis and intestinal obstruction around a mass. The gossypiboma can be considered when a hypoechoic mass accompanying a hyperechoic center with acoustic shadowing is observed on ultrasound examination.

Experimental Identification of Rigid Body Properties by Direct System Identification Method (특성행렬 직접 규명법에 의한 강체특성의 실험적 추정)

  • Jeong, W.B.;Ryu, S.J.;Koe, D.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.22-29
    • /
    • 1995
  • An experimental method to identify the rigid properties (mass, moment of inertia, center of mass) of mounted structures is presented. A direct system identification method is developed and applied to identify the mass, damping and stiffness martix directly from the translational response of vibration testing. Conventional method is sensitive to noise since it needs artificial rotational response of temporary center of mass which is made by the linear transformation of translational response. A presented method needs only the translational response, and it is robuster to noise than conventional method. Several experimental and numerical implementations show the presented method is effective.

  • PDF

Dynamic Stability Analysis of an Axially Oscillating Cantilever Beam with a Concentrated Mass (축방향 왕복운동을 하는 집중질량을 가진 외팔보의 동적 안정성 해석)

  • 현상학;유홍희
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.118-124
    • /
    • 2001
  • The effect of a concentrated mass on the regions of dynamic instability of an axially oscillating cantilever beam is investigated in this paper. The equations of motion are derived using Kane's method and the assumed mode method. It is found that the bending stiffness is harmonically varied by axial inertia forces due to oscillating motion. Under the certain conditions between oscillating frequency and the natural frequencies, dynamic instability may occur and the magnitude of the bending vibration increase without bound. By using the multiple time scales method, the regions of dynamic instability are obtained. The regions of dynamic instability are found to be depend on the magnitude of a concentrated mass or its location.

  • PDF

Free Vibrations of Tapered Cantilever-Type Beams with Tip Mass at the Free End (자유단에 집중질량을 갖는 캔틸레버형 변단면 보의 자유진동)

  • Oh, Sang-Jin;Lee, Jae-Young;Park, Kwang-Kyou;Mo, Jeong-Man
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.965-970
    • /
    • 2002
  • The purpose of this paper is to investigate the free vibration characteristics of tapered beams with general boundary condition(translational and rotational elastic support) at one end and carrying a tip mass with translational elastic support at the other end. The beam model is based on the classical Bernoulli-Euler beam theory which neglects the effects of rotatory inertia and shear deformation. The governing differential equation for the free vibrations of linearly tapered beams is solved numerically using the corresponding boundary conditions. Numerical results are compared with existing solutions by other methods for cases in which they are available. The lowest four natural frequencies are calculated over a wide range of section ratio, dimensionless spring constant and mass ratio.

  • PDF

On the Free Vibration of Immersed Linearly Tapered Beam with a Tip Mass (첨단 질량을 갖는 선형 원뿔대의 자유진동)

  • Shin, Young-Jae;Sung, Kyung-Yun;Yun, Jong-Hak
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.1054-1059
    • /
    • 2002
  • A linearly tapered beam immersed partially in other material is considered and is modelled as a linearly tapered Bernoulli-Euler beam fixed at the bottom with a concentrated mass at the top. Its governing equations is derived and its free vibration analysis is performed for various boundary conditions. And the rotatory inertia of the eccentric lumped tip mass is considered. The problem of determining the natural frequencies leads to an eighth order determinant. The solutions of the frequency equations are obtained numerically. The non-dimensional frequency parameters are given in tabular form and the influence of non-dimensional parameters on natural frequency is discussed for various conditions.

  • PDF

Spacecraft Spin Rate Change due to Propellant Redistribution Between Tanks

  • Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.23-34
    • /
    • 1984
  • A bubble trapped in the liquid manifold of INTELSAT IV F-7 spacecraft caused a mass imbalance between the System 1 propellant tanks and a wobble half angle of 0.38 degree to 0.48 degree. A maneuver on May 14, 1980 passed the bubble through the axial jet and allowed propellant to redistribute. A 0.2 rpm change in sin rate was observed with an exponential decay time constant of 6 minutes. In this paper, moment of inertia, tank geometry and hydrodynamic models are derived to match the observed spin rate data. The values of the total mass of propellant considered were 16, 19 and 20 kgs with corresponding mass imbalances of 14.3, 15 and 15.1 Kgs, respectively. The result shows excellent agreement with observed spin rate data but it was necessary to assume a greater mass of hydrazine in the tanks than propellant accounting indicated.

  • PDF