• 제목/요약/키워드: Inertia Mass

검색결과 336건 처리시간 0.029초

LMI 이론에 의한 삼관성 시스템의 진동억제 (Vibration Suppression Control of 3-mass Inertia System by using LMI Theory)

  • 최연욱
    • 융합신호처리학회논문지
    • /
    • 제2권3호
    • /
    • pp.65-72
    • /
    • 2001
  • 일반적으로 관성시스템의 제어 문제는 결국, 시스템 자체에서 발생하는 진동을 최대한 억제하면서 빠른 시간에 출력이 기준입력을 추종하는데 있다. 이 경우 문제로 되는 것은 시스템의 모델링 과정에서 발생하는 플랜트의 불확실성과 parameter 변동이다. 여기서는 일반적인 강인한 제어기 설계 이론의 하나인 H$_{*}$ 이론이 가지는 단점인 제어기의 보수성을 극복하면서, 동시에 출력의 과도응답특성을 개선하기 위한 방법으로 H$_2$이론을 병용하고 이를 LMI 이론으로 해석하였다. 이 과정에서 3 관성시스템에 LMI 이론을 적용하기 위한 일반화플랜트의 모형을 제시하고 이것의 유효성을, 모델의 불화실성과 parameter변동을 동시에 고려한 simulation을 통하여 확인하였다.

  • PDF

Free vibration analysis of a Timoshenko beam carrying multiple spring-mass systems with the effects of shear deformation and rotary inertia

  • Wang, Jee-Ray;Liu, Tsung-Lung;Chen, Der-Wei
    • Structural Engineering and Mechanics
    • /
    • 제26권1호
    • /
    • pp.1-14
    • /
    • 2007
  • Because of complexity, the literature regarding the free vibration analysis of a Timoshenko beam carrying "multiple" spring-mass systems is rare, particular that regarding the "exact" solutions. As to the "exact" solutions by further considering the joint terms of shear deformation and rotary inertia in the differential equation of motion of a Timoshenko beam carrying multiple concentrated attachments, the information concerned is not found yet. This is the reason why this paper aims at studying the natural frequencies and mode shapes of a uniform Timoshenko beam carrying multiple intermediate spring-mass systems using an exact as well as a numerical assembly method. Since the shear deformation and rotary inertia terms are dependent on the slenderness ratio of the beam, the shear coefficient of the cross-section, the total number of attachments and the support conditions of the beam, the individual and/or combined effects of these factors on the result are investigated in details. Numerical results reveal that the effect of the shear deformation and rotary inertia joint terms on the lowest five natural frequencies of the combined vibrating system is somehow complicated.

한국인 20대 청년 인체분절의 관성특성에 관한 연구 (Biodynamic Characteristics of Korean Male in Twenties-Mass, Center of Mass and Moment of Inertia Characteristics of Body Segments)

  • 이영신;임현균;김철중
    • 대한기계학회논문집
    • /
    • 제18권8호
    • /
    • pp.1952-1966
    • /
    • 1994
  • The body segment parameters of twelve young male Korean were measured to compare with the results of foreign cadaver studies. A human body was assumed to have fourteen body segments. The mass of each segment was measured with a water immersion test and the mass center of a segment was determined on the balance platform by changing postures. In the case of Korean, because of the difference in body proportion, the mass center of whole-body is located further from the distal end of head(Korean : 44.9% vs. Caucasian : 41.2%), and the mass center of each segment also located in different proportional locations. The existing regression equations, which can estimate segment mass based upon the anthropometric dimensions, estimates segment mass (the mass of shank) for Korean with 13% error. Therefore, it is not recommended to estimate the mass, and the moment of inertia of body segment of Korean based on the existing equations. However, the density information of body constituents was similar enough to apply it to Korean density. It was validated by the comparison between the results of the direct immersion method and 3-dimensional volume reconstruction of segment form the cross sectional images of CT-scan. The average body density measured form twelve subjects was $1.035{\;}kg/m^3$ and showed deceasing trendency.

토글-회전관성댐퍼를 이용한 구조물의 진동제어 (Vibration Control of a Structure Using the Toggle-Rotational Inertia Damper)

  • 황재승;최락선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.586-590
    • /
    • 2006
  • This paper presents a new vibration control device by which the mass and damping of a structure is increased equivalently. The vibration control system, named toggle-rotational inertia-viscous damper, can be utilized effectively in applications of small structural drift. Numerical analysis shows that because the relative drift of a structure can be effectively amplified by the toggle system, the device has a great performance in the vibration control without the increase of the damper capacity and size. It is also observed that vibration control effects is caused by the increase of equivalent mass and damping due to the rotational inertia and damping of the device.

  • PDF

끝단 질량을 갖고 종동력을 받는 외팔 Timoshenko 보의 동적안정성에 미치는 부분 탄성기초의 영향 (Influence of Partial Elastic Foundations on Dynamic Stability of a Cantilevered Timoshenko Beam with a Tip Mass under a follower force)

  • 신광복;김효준;류봉조
    • 한국정밀공학회지
    • /
    • 제22권10호
    • /
    • pp.65-71
    • /
    • 2005
  • This paper presents the dynamic stability of a cantilevered Timoshenko beam on partial elastic foundations subjected to a follower force. The beam with a tip concentrated mass is assumed to be a Timoshenko beam taking into account its rotary inertia and shear deformation. Governing equations are derived by extended Hamilton's principle, and finite element method is applied to solve the discretized equation. Critical follower force depending on the attachment ratios of partial elastic foundations, rotary inertia of the beam and magnitude and rotary inertia of the tip mass is fully investigated.

Leipholz 기둥의 안정성에 미치는 자유단의 탄성구속과 말단질량의 영향 (Influence of Elastic Restraints and Tip Mass at Free End on stability of Leipholz Column)

  • 윤한익;박일주;진종태;김영수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 춘계학술대회논문집; 부산수산대학교, 10 May 1996
    • /
    • pp.309-315
    • /
    • 1996
  • An analysis is presented on the stability of elastic cantilever column subjected to uniformly distributed follower forces as to the influence of the elastic restraints and a tip mass at the free end. The elastic restraints are formed by both the translational and the rotatory springs. For this purpose, the governing equations and boundary conditions are derived by using Hamilton's principle, and the critical flutter loads and frequencies are obtained from the numerical evaluation of the eigenvalue functions of this elastic system. The added tip mass increases as a whole the critical flutter load in this system, but the presence of its moment of inertia of mass has a destabilizing effect. The existence of the translational and rotatory spring at the free end increases the critical flutter load of the elastic cantilever column. Nevertheless their effects on the critical flutter load are not uniform because of their coupling. The translational spring restraining the end of cantilever column decreases the critical flutter load by coupling with a large value of tip mass, while by coupling with the moment of inertia of tip mass its effect on the critical flutter load is contrary. The rotatory spring restraining the free end of cantilever column increases the critical flutter load by coupling with the tip mass, but decreases it by coupling with the moment of inertia of tip mass.

  • PDF

유체 봉입 마운트의 동적 특성화를 위한 집중질량 요소를 갖는 기계적 모형의 문제점 파악과 실험 방법 개선을 통한 수력학적 모형의 타당성 확인 (A Study on Shortcomings of Mechanical Model with Lumped Mass for Dynamic Characterization of Hydraulic Mounts and Confirmation of Hydraulic Model by Improvement of Experimentations)

  • 배만석;이준화;김광준
    • 한국소음진동공학회논문집
    • /
    • 제13권5호
    • /
    • pp.393-399
    • /
    • 2003
  • Hydraulic mounts show strong1y frequency-dependent stiffness and damping characteristics in low frequency range, which result from so called inertia track dynamics. A lumped mass has been incorporated in several mechanical models of the literature to take the inertia effect of the fluid in the track into consideration. Although complex s%illness by the mechanical model showed good agreements with the measured values, there exists a critical pitfall. In this paper, the shortcomings of mechanical models with lumped mass for hydraulic founts are clearly identified by illustrating actual measurements of the stiffness parameters for a hydraulic mount. It is conclusively discussed that the inertia effect of the fluid flow through the circular track is significant but latent. As an alternative to the mechanical model, a hydraulic model is claimed to be used for further dynamic analysis of engine/mount system or whole car system.

Vibration Suppression Control of 3-mass Inertia System by using LMI Theory

  • Choe, Yeon-Wook;Lee, Hyung-Ki
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2001년도 하계 학술대회 논문집(KISPS SUMMER CONFERENCE 2001
    • /
    • pp.129-132
    • /
    • 2001
  • 본 논문은 3 관성시스템의 진동억제를 위한 강인한(robust) 제어기의 설계법을 제안하고 이를 simulation 을 통하여 확인하는데 있다. 일반적으로 관성 시스템의 제어 문제는 결국. 시스템 자체에서 발생하는 진동을 최대한 억제하면서 빠른 시간에 원하는 위치에 출력을 가져가는 데 있다. 이 경우 문제로 되는 것은 시스템의 모델링 과정에서 발생하는 플랜트의 불확실성과 parameter 변동이다. 여기서는 일반적인 강인한 제어기 설계 이론의 하나인 $H_{\infty}$ 이론이 가지는 단점인 제어기의 보수성을 극복하면서, 동시에 출력의 과도응답특성을 개선하기 위한 방법으로 $H_2$ 이론을 병용하고 이를 LMI 이론으로 해석하였다. 이 과정에서 3 관성시스템에 LMI 이론을 적용하기 위한 일반화플랜트의 모형을 제시하고 이것의 유효성을, 모델의 불확실성과 parameter변동을 동시에 고려한 simulation을 통하여 확인하였다.

  • PDF

링크모션 메커니즘의 기구학적 분석 및 다이나믹 발란싱 테크닉 (Kinematic Analysis and Dynamic Balancing Technique in a Link-Motion Mechanism)

  • 서진성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.498-502
    • /
    • 2004
  • In a link-motion mechanism, numerous links are interconnected and each link executes a constrained motion at a high speed. Due to the complicated constrained motions of the constituent links, dynamic unbalance forces and moments are generated and transmitted to the main frame. Therefore unwanted vibration is produced. This degrades productivity and precise work. Based on constrained multi-body dynamics, the kinematic analysis is carried out to enable design changes to be made. This will provide the fundamental information for significantly reducing dynamic unbalance forces and moments which are transmitted to the main frame. In this work, a link-motion punch press is selected as an example of a link-motion mechanism. To calculate the mass and inertia properties of every link comprising a link-motion punch press, 3-dimensional CAD software is utilized. The main issue in this work is to eliminate the first-order unbalance force and moment in a link-motion punch press. The mass, moment of inertia link length, location of the mass center in each link have a great impact on the degree of dynamic balancing which can be achieved maximally. Achieving good dynamic balancing in a link motion punch press is quite essential fur reliable operation at high speed.

  • PDF

모우드 측정을 이용한 관성 모우멘트 도출 (A method to determine moment of inertia properties of an arbitrary shape body by modal testing)

  • 박윤식;정경렬;홍성욱;전혁수;이종원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.102-107
    • /
    • 1986
  • This paper presents a new idea to obtain moment of inertia values of an arbitrary shape body by applying inverse modal transformation technique. A multiaxes inertia pendulum apparatus was designed to measure 6 rigid body modes of a test body. A software was developed to calculate inertia properties as well as the location of center of gravity and total mass of the test body from the measured modal data. The developed method was applied to a simple body of which the inertia properties are known then the obtained values were compared with the known values.

  • PDF