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Vibration Suppression Control of 3-mass Inertia System

by using LMI Theory
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Abstract

Generally, it is said that control of the inertia system is to track the reference input quickly while suppressing the vibration due to the
system itself. In this case, the difficulty for designing a controller is caused by medeling uncertainty and parameter variation. The purpose
of this paper is to propose a design method to suppress the vibration of three-mass inertia system based on the LMI theory. That is, the
generalized plant model by which we can cope with conservativeness of the existing H,, theory is proposed and analyzed in terms of LMIL.
The results of simulation for the three-mass inertia system show that the proposed design approach is quite effective under the given

situations.
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1. Introduction

In the past several years, the H, and/or H,, control have attracted
many researchers’ attentions. Also, its effectiveness has been
reported in various application fields in these years. The H,
control theory provides us a quite powerful tool for shaping the
loop gain in the frequency domain or obtaining the robust
stability property. Therefore, it is quite useful to obtain
satisfactory feedback properties such as low sensitivity. On the

other hand, the H, optimal control theory has been heavily

studied since 1960°s as the LQG optimal control problem. The H,
norm performance measure seems to be suitable for obtaining
good command response.

For a servo system design, the following three specifications are
of practical interests: (1) internal stability of the closed-loop
system which must be guaranteed; (2) desired feedback
characteristics such as robust stability, sensitivity reduction and
disturbance attenuation; (3) desired transient and steady-state

properties such as robust tracking to reference inputs.
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The H. control is a suitable technique to achieve the first two
specifications, because they can be naturally expressed as H.
norm constraints. However, since the H,, control is based on the
maximum singular value of the transfer function matrix from
disturbance to evaluation signals, it is inevitable that the response
should be rather conservative. Therefore, it is required to
alleviate this phenomenon in order to meet the third specification.
Recently, it has been proved that, by introducing H, specification
into the H,, design, we could simultaneously benefit from the H,
and H, controf design method [1]. This approach can be achieved
by using the so- called LMI (Linear Matrix Inequalities) theory,
and is generally called a mixed H,/H, control. In consequence, a
designer can arbitrarily determine the trade-off between H, (e.g.
noise rejection) and H, (e.g. robust stability) performance of the
closed loop system.

The formulation of the mixed H,/H, control problem for servo
system is presented in Section II. The main results are given in
Section [II, where the structure of generalized plant for robust
tracking is proposed and, we also show that there exists a
solution to the problem by virtue of an LMI approach. In Section
IV, after designing a robust controller based on the proposed
method for the three-mass inertia problem, we analyze the results

of simulation and check the validity of the proposed structure.

I1. Mixed H:/H, Optimal Design Problem
by LMI

The basic block diagram used in this paper is given in Fig.1, in
which the generalized plant P s given by the state-space
equations

x=Ax+Bw+B,u

z, =C_x+d w+d_,u

z, =C,x+d,w+d,u

y=C,x+d, w
where x e R"is state vector, u is the control input, w is an
exogenous input (such as a disturbance input, sensor noise etc.), y
is the measured output and z=[z_ z, ]T is a vector of output
signal related to the performance of the control system (z, is

related to the H, performance and z, is related to the H,

performance).

Z
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r

Fig.1 Block diagram of Mixed Hy/H,, control

Let T, 2w be the closed transfer function from w to z for the

system P closed with the output-feedback control law
u= K, Y. Our goal is to compute a dynamical output feedback

controller K,

K. X, =A X +B,y @
u=Cyx, +dyy

that simultaneously meets H, and H,, performance on the closed-

loop behavior. The closed-loop system Tzw has the following

description
Xr:l = Aclxcl + Bcl"v
T:w V20 = Ccllxcl +dc1]w &)

z, =CopX, +d W
The problem we concerned with can be summarized as
minimizing the H, norm of the channel w — z,(:7,), while
keeping the bound y on the H, norm of the channel
woz (:T,).ie
min"T2 "2 subject to : ||Tm|L <y

Since this problem can be reformulated as a convex optimization
problem[”, the optimal solution under the given value of y can be
obtained through LMI. As efficient interior-point algorithms are
now available to solve the generic LMI problems, the mixed
H,/H,, problem can be solved without much difficulty in order to

find the best trade-off between the H, and H,, minimization.

II1. The Proposed Structure for LMI
Design

In order to find a robust servo controller Kr that satisfies
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desirable transient response (H, performance) as well as desired
feedback properties (H. performance), we adopt the mixed
Hy/H,. control system rather than the conventional H, control
theory. For the purpose of this, we, first, divide the control
objectives into each H, and H, performance criterion, and then
describe the two criteria as one formation. In other words, a new
structure for the mixed Hy/H,. control is required to deal with two
criteria simultaneously. Here, we introduce the following
interconnection for robust control system, on which a controller

satisfying two criteria is designed.

R
2. — :
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2. WS
24___._.. o
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Fig. 2 The proposed generalized plant for Mixed H,/H,, control

A. H, control Problem: In Fig.2, (X;el is added in the loop in

order to meet the internal mode! principle [2]. W,(s) denotes a
weighting function related to the plant uncertainty (in this case,
additive uncertainty is used) and W,(s) is a sensitivity weighting
function. We can summarize the robust tracking H, control

problem as follows:
(S1) K,(s) stabilizes P(S).

T, ()

82 |r1.(s)|. = I (s)

<Y

where T, | (s)denotes the transfer function from w to Z,
e}

and is related to robust stability requirement (for additive

uncertainty) [2]

T, .. = ]|(1 +GKY'KW,| <y )

xX

K=0;K,

The nominal performance condition is reflected by

- (S) denotes the transfer function

“lx

T (S)"Jc < y. where

from w to Z_,. In this case, if (S2) is satisfied under the

condition of »=0.5, then robust performance can be guaranteed
outright, since (S2) will satisfy the SISO robust performance test
for additive uncertainty given by Zhou, et al., [3}

T, ()

The robust performance condition that was given in (5) is

T, (s)|+

<1 (5)

necessary and sufficient, and the left-hand side is actually the
peak value of p {4]. In section 4. we will investigate this value as
an index to robust performance when designing a control system
for the three-mass inertia problem.

By virtue of the Bound Real Lemma the H, norm of 7, (s)is

smaller than y if and only if there exists a symmetric positive

definite matrix X with

ALT:IX:D +xmAcl XaoBcl CZm
B, X, -7 dg. |<0 ¢
Cclac dclrzn v
X, >0 (6-0)

where all the matrices A,,B,,C, and d _aredefined in (3).

o>
B. H; control Problem: The traditional H, optimization attempts
to minimize the energy of the system output when the system is
faced with white Gaussian noise input. So, in order to design a
controller adept at handling noises, H, optimization should be

considered. That is, the H, norm minimization of the transfer

function T, ,(s)from w to z; in Fig.2 is to be taken as a

controller design problem, where p is a varying parameter.

2
2

It is well known that the upper bound of "T_ w||. is defined by
-2

r(C_,W, CCTIZ) , where W, solves the Lyapunov equation
T T

Ach() + WaAcl + BcIBcI = 0 (7)
Since W, < W for any W satisfying

AW +WA!, + BB’ <0 ®)
It is readily verified that ”T “Z <v ifand only if there exists W

2wl

>0 satisfying (8) and tr(C,, WCLZ) < v [1]. With auxiliary
parameter @, the following analysis result has been known:

[Theorem 1] A, is stable and {7,

Zw

2
_<v if and only if

there exist symmetric X, =W ! and Q@ such that
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,
A,X, + X.A, X.B, <0 (©-2)
Bc(l X, e
;
( X2 CL'IZJ >0 (9'b)
CL'/2 Q
r(Q) < v -

C. Mixed H,/H,, Control: The mixed H./H, controller K, must

satisfy both of the following criteria simultaneously

Il <
T, , <V an

In order to keep the tractability of the constrained optimization

problem, the following assumption is considered.
Xx = X2 = P (12)

Therefore, notice that X can be written as

4
S
* * * *
where dim(X)=dim(¥)=dim(4,) and [X 1 j‘> o is coupling

1Y
LMI. The solution X, ¥, and Q under the constraints of (10}, (11)

is dependent on the value of y and v, and can be obtained using

any available software such as Matlab LMI toolbox [4].

IV. Controller Design for three-mass

Inertia System

We consider the problem given in [6]. The model treated in the
problem is a coupled three-mass inertia system that reflects the
dynamics of mechanical vibrations. A controller, by which robust
performance (both in time and frequency-domain) condition must
be satisfied, is required in order to solve the problem.

The three-mass inertia problem is shown in Fig.3, where the
meanings of each symbol are as follows:

8,(i =1~ 3) {radian]= angular displacement

1= control torque [Nm]

1, (i =1 ~ 3) = torque disturbance

j.(i =1~ 3)[kgm® ] = moment of inertia

d, (i =1~3,a,b)[Nms/rad]= viscous-friction coefficient of

motors,

k,(i = a,b)[Nm/rad] = torsional coefficient of connection

part
'E_Q Tav Tos
5 N » Y 5 hY
T B B (fb) ;
:\e ji k. \e e ] \? Js
d da \ o A\ g
Mass 1 Mass 2 Mass 3

Fig.3 Coupled three-mass inertia system

By using these parameters, the equations of motion can be
described as

JB =-d® -k,0,-6,)-d,6,-9,)+1+1,

5B, =k, (6,-0,)+d, 6, -8,)-d,8, - £,(0,,8,)-d,(6, -6,) +1,
JB; = £,(6,,6,) +d,(6,-0,)-d0; +1,

fb(ez’ez) = kb(ez —63)
(14-a)

It is assumed that the control torque T is generated by voltage e

[V] through a current amplifier, the equation of which is shown
below [6].

1=-a,1+a.e (14-b)
We want to design a controller by which several design
specifications are to be satisfied on condition that all of the 11
parameters are subject to change within the range of variation

and there must exist hardware constraints.

4.1 Feedback Controller Design by Mixed H,/H,, Control

In this problem, there are 11 physical parameters that are
assumed to be changing within the given range of variation. If all
the variations are reflected in the controller design, the obtained
controller may be considerably conservative as well as complex.
Therefore, we first find out principal parameters (j; and k,) that
strongly affect the resonant frequency of the plant by plotting the
frequency response curve, and then a robust controller dependent
on these parameters is carried out by making use of the proposed
structure for mixed H,/H,, control. The robustness on variations
of the other parameters is evaluated through simulation.

The parameter variations of j; and &, can be described by additive
uncertainty such as

(15.a)
(15.b)

are nominal values, W, W, are constant

j3 = j3., + Wl\sh
k,=k, +W, 3,
where .]3 ’ ka“
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values representing the range of variation, and
5, <1, Bl<! (16)
Furthermore, if we express the reciprocal of j;as

TN

the conservativeness related to the additive uncertainty may be

reduced up to a certain point by adopting (17) in place of (15-a)

in the plant dynamics.

+
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Fig. 4 Representations for additive parameter variation

If we define the input and output of variations as

. .,
z, =z, z, 1" .w,=[w, w,] (18ab)

and then, parameter variation from W, to Z,can be described

as a structured perturbation using
A =diagld, &, (19)
The purpose of a controller is, if possible, to make
r
z, =[6,-0, 6,-0, u] 20)

small in the presence of parameter variations and disturbance.

This can be achieved by letting the closed-loop transfer function

T, from
w,=lt, .1 = w] 1

to Z, have robust performance. Therefore, if it is possible to

design a controlier by which we keep the H,-norm of the closed-

, r
loop transfer function 7, from w, =[WH wi] to

z, = [zM z, ]T low, the design specifications can be satisfied.

In other words, the output will track the reference signal and
torsional vibrations between 6, and 6;, 6, and &; will be also
suppressed under the condition of torque disturbance and
parameter variations.

Next step, we introduce the generalized plant for this type of
problem by the application of Fig.2. That is, a controller, by
which H,-norm of the transfer function T, from w (refer to Fig.
5) to z, is to be minimized under the condition of H, norm, can

be designed based on the structure shown in Fig.5.

Fig. 5 Structure for Mixed Hy/H,, controller design

In Fig.5, B] ,Bzare design variables which can be adjusted to

improve the values of 0, —06,and O, —0,, respectively.
1 2 2 3

4.2 Feedforward Controller Design
Since it is impossible to meet all the design specifications related
to the output transient response only by a feedback controller, we
adopt the structure of two-degree-of-freedom system to cope with
this problem. That is, by adding a feedforward path, we try to
improve the output time response. The feedforward controller is
designed by using the model matching method [2].
Fig.6 shows the basic structure for the two-degree-of-freedom
system used, where G denotes the real transfer function from the

control input T to output y (=6,) and G, denotes an ideal model

for design, and F can be arbitrarily determined if only G,;' Fis
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stable and proper. If G and G,, are identical, we can prescribe the
output response by making use of feedforward controller F
independent of the feedback controller K,, because the transfer
function from r to y becomes F regardless of K,. And in case of G
not coinciding with G,,, the feedback controller K, will act as a
compensator for the tracking error.

It is assumed that G, is an ideal model that has no viscous

friction and torsion, thatis, 8, =0, =0,. Therefore, we define
G;pl :(jl +j2+j3)52 (22)

1

F= (23)
(T7s* +2LTs + 1)(Tys + 1)

where T} =0.023,7, =0.03,£ = 0.9, by which the output

response can sufficiently satisfy the design specifications when a

step reference is added.

r

v

GnF ——>+—| G

Fig.6 Two-Degree-of-Freedom Systemn

4.3 Simulation Results

After designing a robust controller based on Fig.5, we check the
six design specifications through simulation. Matlab is used for
computation.

In Table 1, the parameter values used in the simulation are shown,
where ‘nominal’ means an ideal case without parameter
variations, ‘Casel’ represents that the moments of inertia have
their minimum values and the torsional and viscous-friction
coefficients are varied maximally within the range of variation,
*Case2’, on the contrary, represents that the moments of inertia
have their maximum values and the torsional and viscous-friction
coefficients are varied minimally, and the case that all of the
parameters have their minimal value is represented by ‘Case3’.

The values of w, W, which express the magnitude of variations

on j k are given as 0.004 (20% variation) and 8 (10%

variation). respectively. And constants ,[3,,[3, are determined

as 10, 0.08, 0.05, respectively through several trial and errors.
Although six specifications were originally given in [6], we will
show two representative simulation results on account of space

considerations.

Table 1. Nominal and varied parameters

Para-

meters Nominal  Case | Case 2 Case 3
I 0.001 0.0009  0.0011 0.0009
2 0.001 0.06009  0.0011 0.0011
s 0.002 0.001 0.003 0.003
ka 920 1012 828 828
ky 80 88 72 72
d, 0.005 0.055 0.045 0.045
d; 0.001 0.0011  0.0009 0.0009
d; 0.007 0.035 0.0014 0.0014
d, 0.001 0.01 0.0002 0.0002
dy 0.001 0.0011  0.0009 0.0009
a, 5000 5000 5000 4500

(1) Tracking ability (vibration suppression) — specification 1

The reference tracking ability is shown in Fig.7, where 6; and 1
represent plant output and control input, respectively. The results
of simulation are arranged in the Table 2, from which we know
that the design specification were sufficiently satisfied in the

presence of the parameter variations and disturbance.

1*",72?——?3———‘ 2 \
Eos / r ‘[ <
/J J 3 \;,,,»_h
o d 0 S
0 02 04 aQ 02 04
Time [sec.] Time [sec.}
\ 0.015 ﬁ‘ !
g ooty 1
| = , |
i 5,0.005 f‘
] [4 t\ e e
T 0005 |
Y 004 o
0.2 0.4 Q 02 04
Time {sec.] Time [sec.}

Fig. 7 Step Responses to the reference input

(2) Complementary Sensitivity Function — Specification 4
The gain plots of the complementary sensitivity function are

shown in Fig.8. We know that, although the condition - the gain



EMEE- A2 B¢ HeE F 2483 M 20017 /71

must be under 20[dB] over all the frequencies considered — is
satisfied despite of variations, the other one — the gain must be
under —20[{dB] above 300[rad/sec] frequency — cannot be met in
any cases. Actually, since it was already known that specification
no. 4 and the others had a reciprocal relationship each other [6], it
is impossible to meet all the specifications simultaneousty.

Numerical results are arranged in Table 3.

Table 2. Results for specification 1

Require-
Nominal Worst Case
ments
max |t <3 1.9637 2.4508 (Case 2)
>0
max [6,-6,| <0.02 0.0015 0.0023 (Case 3)
=0
max [6,-6;| <0.02 0.0121 0.0197 (Case 2)
0

Gain Plot of Complementary Sensitivty function
0, Y

:
w"! . ——J

Gain [dB]

0 e —— _yAi*L,M%J

° 10’ 10° 10° 10

Frequency (rad/sec)

0

Fig.8 Gain plots of complementary sensitivity function

Table 3. Results for specification 4

Require- .
Nominal Worst Case
ments

. 8.7150 (Case
mxGGo)| 4Bl <0 63577 ¢

® 2)

. 1.4813 (Case
maxGGo) [B] <20 07484 (
®2300 [rad/sec) 2)

(3) Robust stability by p-analysis

After closing the plant with the controller K

roe

additive uncertainty of the parameters jJ,ka as input and

output of the closed-loop system (see Fig.4). Then the system is

we take the

robustly stable for all structured A(s) satisfying “A[l <1 if and

only if the interconnected system in Fig.9 is stable. This can be

done by checking
U, =supu,(P(jw)) <1 (24)
[
That is, we can check robust stability of Fig.9 by evaluating (24).
The p-value is shown in Fig.10, when we let the class of model
erroras Ae diag[C C], where C denotes the set of complex

numbers. Since the maximum p-value is about 0.28 at

®=300{rad/sec], we can confirm that the robust stability is

satisfied.
......... &
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Fig.9 Representation for the structured singular value
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Fig. 10 Structured singular value

V. Conclusion
In this paper, we have proposed a generalized plant structure for
the application of LMI theory to cope with some difficulties in

the three-mass inertia system. And the effectiveness of the
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proposed structure was confirmed through simulations. For the
purpose of designing a robust controller, the design objectives
such as sufficient vibration suppression and robust tracking are
first defined in terms of H, and H.. optimization theory, then the
generalized plant for the mixed H,/H,, control is determined and
solved by using a LMI algorithm. Practical computation to get a
controller is now quite easy thanks to some excellent software
such as Matlab.

It is thought that the difficulty in selecting weighting functions,
which is essential to the general H, control theory, can be
avoided to some degree if we use the proposed structure for
Whife the LMI-based

computationally more involved for large problems. it has the

controller  design. approach s
merit of eliminating the regularity restrictions attached to the
Riccati-based solution. For example, the problems caused by
adding an integrator in the loop for servo system design can be

easily handled through the generalized plant proposed here.
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