• Title/Summary/Keyword: Industrial waste products

Search Result 235, Processing Time 0.034 seconds

Manufacturing Characteristics of Environmental-friendly Waste Ash Brick with Industrial By-Products (산업부산물을 이용한 친환경 연소재벽돌의 제조특성)

  • Kim, Han-Seok;Jung, Byung-Gil;Kim, Dae-Yong;Kang, Dong-Hyo;Jang, Seong-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.3
    • /
    • pp.226-234
    • /
    • 2009
  • The main objective of this study was to evaluate the effects on shape and size, compressive strength, water absorption and heavy metals leaching with various weight mixing ratios in waste ash brick products using waste recycling MSWI(Municipal Solid Waste Incinerator) bottom ash, steel slag and waste building material. The manufacturing processes for the waste ash brick consist of screening, mixing, conveyor transmission, compaction.forming, and curing steps of raw materials. The weight mixing ratios of steel slag around bottom ash were adjusted within the ranges of 10% to 30%. The reported results show that the width and thickness of the manufactured waste ash brick could be satisfied with $90{\pm}2mm\;and\;57{\pm}2mm$, respectively which are K.S. standards of products qualities. And in case of length, only 20-Ba50Ss30, 20-Ba60Wb20 and 20-Ba50Wb30 for the mixing ratios could be satisfied with $190{\pm}2mm$ that is K.S. standards of products quality. The compressive strength and water absorption for 20-Ba50Ss30 and 20-Ba70Wb10 were over $8N/mm^2$ and below 15% respectively that are K.S. standards of manufactured waste ash brick. The results of tests for the heavy metals leaching in the all manufactured waste ash bricks are also passed to the wastes management regulations. The cost analysis of 20-Ba50Ss30 is evaluated. The manufacturing cost is evaluated 34.3 won/brick with 8 hours and 20tons of raw material per day. Incinerators with problems in bottom ash disposal can therefore derive significant benefits from the application of waste ash brick production.

Evaluation on Feasibility of Industrial By-products for Development of Mono-Layer Landfill Cover System (산업부산물을 이용한 단층형 매립지 복토시스템 개발을 위한 적용 타당성 평가)

  • Kim, Soon-Oh;Kim, Pil-Joo;Yu, Chan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.11
    • /
    • pp.1075-1086
    • /
    • 2008
  • In order to investigate the applicability and suitability of the industrial by-products to apply mono-layer cover system for non-sanitary landfill sites, 6 different industrial by-products, such as construction waste, bottom ash, gypsum, blast furnace and steel manufacture slags, and stone powder sludge, were evaluated. Various physicochemical and hydrodynamic properties of the industrial byproducts were investigated. The environmental safety was monitored using batch and long-term leaching tests as well. In addition, the flexibility of plants was observed by cultivating them in the industrial by-products. The results for physicochemical properties indicate that most of the materials considered appeared to be suitable for landfill cover. Particularly, the concentration levels of hazardous elements regulated by the Korean Law for Waste Management did not exceed the regulatory limits in all target materials. In addition, the concentrations of regulated elements for the Korean Soil Conservation Law were examined below the regulatory limits in most of materials considered, except for the stone powder sludge. The results of batch and long-term experiments showed bottom ash and construction waste were the most suitable materials for landfill cover among the industrial by-products considered. The results of plant studies indicate that the bottom ash among industrial by-products considered was most effective in developing vegetation on landfill site, showing fast germination and large growth index. At the final covering system made of mixture of soil and bottom ash, the optimum application rate of farmyard manure was observed to be 40-50 Mg/ha.

Status and Strategy on Recycling of Domestic Used Chemical Catalysts (국내 사용 후 화학촉매제품의 재자원화 현황 및 향후 방향)

  • Kim, Young-Chun;Kang, Hong-Yoon
    • Resources Recycling
    • /
    • v.26 no.3
    • /
    • pp.3-16
    • /
    • 2017
  • Chemical catalyst products are applied to various fields such as petrochemical process, air pollution prevention facility and automobile exhaust gas purifier. The domestic and overseas chemical catalyst market is increasing every year, and the amount of waste catalyst generated thereby is also increasing. Most of the used chemical catalyst products, such as desulfurized waste catalysts and automobile waste catalysts containing valuable metals are important recyclable resources from a substitute resource point of view. The recycling processes for recovering valuable metals have been commercialized through some urban mining companies, and SCR denitration catalysts have been recycled through some remanufacturing companies. In this paper, the amount of domestic production and recycling of major catalyst products have thus been investigated and analyzed so as to be used as basic data for establishing industrial support policy for recycling of used chemical catalyst products. Also tasks for promoting the recycling of used chemical catalyst products are suggested.

Calculation and Analysis of Actual Recycling Rate and Final Disposal Rate of Industrial Waste by Material Flow Analysis (물질흐름분석을 통한 사업장폐기물의 실제적인 재활용률과 최종처분율의 산정 및 분석)

  • Oh, Gil-Jong;Cho, Yoon-A;Kim, Ji-Yeon;Kim, Ki-Heon
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.785-798
    • /
    • 2018
  • Since the Framework Act on Resource Circulation was enacted in 2018, the government should establish a National Resource Circulation Master Plan every 10 years, which defines mid- to long-term policy goals and directions on the efficient use of resources, prevention of waste generation and recycling of waste. In addition, we must set mid- to long-term and stepwise targets for the final disposal rate, recycling rate (based on sorted recyclable materials and recycled products), and energy recovery rate of wastes, and relevant measures should be taken to achieve these targets. However, the current industrial waste (IW) statistics have limitations in setting these targets because the final disposal rate and recycling rate are calculated as the ratio of the recycling facility input to the IW generation. In this study, the material flow from the collection stage to the final disposal of industrial waste was analyzed based on the generation of 2016, and the actual recycling amount, actual incineration amount, final disposal amount and their rates were calculated. The effect on the recycling, incineration and final disposal rates was examined by changing the treatment method of nonhazardous wastes from the factory and construction and demolition wastes, which were put in landfills in 2016. In addition, the variation of the waste treatment charge was investigated according to the change of treatment methods. The results of this study are expected to be effectively used to establish the National Resource Circulation Master Plan and industrial waste management policy in the future in South Korea.

A Field Survey on the Generation of Industrial Waste Oyster Shells and their Disposal Status (굴패각으로 인한 산업부산물 발생과 처리현황 실태조사)

  • Kim, Ji-Hyun;Song, Won-Ho;Moon, Hoon;Chung, Chul-Woo;Lee, Jae-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.146-147
    • /
    • 2013
  • The oyster shells of about 240,000 tons have been annually produced in south coast of South Korea. However, about 25% of the oyster shells (60,000tons) was recycled as oyster seeding and fertilizer due to the limited amount of consumption for such purposes. The stored amount of oyster shell in the fertilizer manufacturing company is overfilled, and thus cannot accept any more of the waste oyster shells. As a result, landfill and illegal dumping of waste oyster shells have become an increasingly serious issue since 2011. In this research, the problems generated by the oyster shells were investigated through surveying activities. One of the possible alternative solutions that can process large amount of waste economically was found to be the application of oyster shells as a construction materials.

  • PDF

Multi-product Remanufacturing Planning on a Single Facility (단일 재생처리 설비를 이용한 다중 제품 재생계획)

  • Joo, Un Gi;Lee, Choong-ho
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.3
    • /
    • pp.240-247
    • /
    • 2005
  • Today's hightech society requires thousands of different products which ultimately result in billions of tons of materials discarded, most of which end up in landfills. Therefore industrial circles could not help thinking about environmental problems by regulations of government or pressures of consumer. Generally, the related research subjects are classified into both of environmentally conscious manufacturing and product recovery, where product recovery aims to minimize the amount of waste sent to landfills by recovering materials and parts from old or outdated products by means of recycling and remanufacturing (including reuse of parts and products). In this research, we constructed a model for remanufacturing various goods using a single facility and developed a dynamic programing(DP) algorithm based upon the optimal solution characterization. We showed the efficiency of the developed DP algorithm with a numerical example.

A Study on the Treatment of Combustible Wastes and the Resource Recovery by Pyrolysis (熱分解에 의한 可燃性 廢棄物의 처리 및 資源回收에 관한 연구)

  • Kim, Sam-Cwan;Zong, Moon-Shik
    • Journal of Environmental Health Sciences
    • /
    • v.13 no.1
    • /
    • pp.17-33
    • /
    • 1987
  • As a result of technical advances and industrialization, the characteristics of domestic and industrial wastes are becoming more complex. Accordingly, improved treatment and disposal systems are being continuously sought to take account of complex characteristics and to comply with economic restrictions. In this study, an application of pyrolysis to the treatment of industrial wastes, including waste scrap rubber, waste raw material used in making the slipper bottom and waste PVC pipe, and the effectiveness of pyrolysis in resource recovery from these wastes were investigated. Batches of wastes were pyrolysed by external heating to a temperature of 400-800$\circ$C in a 32 mm diameter x 0.9 m long silica tube to produce combustible gases, oils and chars. Before the start of pyrolysis runs, the entire system was purged with nitrogen gas to exclude the air. The temperature inside the retort was controlled by the thermocouple in the gas stream, and referred to as the pyrolysis temperature. Under these conditions three products were separately collected and further analyzed. The results were summarized as follows. 1. More gases and less chars were produced with higher pyrolyzing temperature and with higher rates of heating, but the yields of oils tended downwards at temperatures above 700$\circ$C. Accordingly, operating conditions of pyrolysis should be varied with desired material. 2. Calorific values and sulfur contents of produced oils were sufficient and suitable for fuel use. Chars from waste rubber had high heating values with low sulfur contents, but calorific values of chars from waste PVC and waste slipper were as low as 3, 065-4, 273 kcal/kg and 942-2, 545 kcal/kg, respectively. Therefore, char from these wastes are inappropriate for fuel. 3. Soluble contents of Pb, Cd, Cu and Zn in chars from waste rubber and waste slipper were below the Specific Hazardous Waste Treatment Standards. However soluble contents of Pb and Cd in chars from waste PVC were one or two times and five or seven times exceedingly the Specific Hazardous Waste Treatment Standards, respectively. 4. Post high heating is desirable for treatment method of waste PVC which generates toxic hydrogen chloride. 5. The proportions of hydrogen, methane and ethane in produced gases were in the range of 3.99-35.61% V/V, 18.22-32.50% V/V and 5.17-5.87% V/V, respectively. 6. Pyrolysis is a useful disposal method in case of waste slipper, which was hardly combustible, and thus investigations of this kind of materials are required for effective management of industrial waste. 7. Based upon the possible market development for products, overall pyroly economics to take account of treatment values of noncombustible or hazardous materials should be evaluated.

  • PDF

The Solidification of $CO_2$ by Using Waste Cement and Inorganic Waste By-Products (폐(廢)콘크리트 미분말(微粉末)과 무기성(無機性) 폐부산물(廢副産物)을 이용(利用)한 $CO_2$ 고형화(固形化))

  • Ahn, Ji-Whan;Yoo, Kwang-Suk
    • Resources Recycling
    • /
    • v.18 no.3
    • /
    • pp.3-10
    • /
    • 2009
  • This paper will introduce the study which is the solidification and reduction of $CO_2$ green house gas, by using inorganic industrial wastes such like waste cement, steel making slag, incineration ash and so on. These inorganic wastes contain a large quantity of CaO content in common, which is easily reacted with CaO resulting in formation of $CaCO_3$. It will be suggested in this study that the necessary of the reduction and solidification of $CO_2$ gas with using industrial inorganic wastes is for building the Korea carbon storage model in this study.

A Study on Possibility of Bio-coal Manufacturing using High Moisture Agricultural by- Products (고함수율 농업부산물을 이용한 Bio-coal의 가능성에 대한 연구)

  • Kim, Min-Jung;Park, Kyoung-Joo;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.3
    • /
    • pp.1-6
    • /
    • 2015
  • The rapid industrial development is facing problem due to energy depletion in Korea. So that, it can be necessary to develop alternative energy sources. Alternative energy like biofuels can be produced by using waste fuel, which is ecofriendly. As we know, the organic waste was banned to dump in landfill and ocean dumping. The most practicable method usually used to reduce organic waste is getting feedstuff or composting, considering the discharge characteristics of agricultural by-products waste treatment were selected. In this study, bio-coal was made using agriculture by product. Biocoal was prepared by adding 50 g of uniformly mixture into reactor and was carbonized at low temperatures 210, 220, and 230℃. The time of reaction was 1, 2 and 3 hours. Bio-coal approximately was similar to the standard of solid fuels. Other characteristics of fuel were also studied. The experiments which were analyzed were moisture content and calorific value, ash, chlorine, sulfur and heavy metals analysis as mercury, cadmium, lead, arsenic, and chromium. As a result, bio-coal 220℃, 2 hours was the optimal conditions while heating.

Strength properties of non-cement board for drying shrinkage control using industrial by-products (산업부산물을 활용한 건조수축 제어용 무시멘트 보드의 강도특성)

  • Park, Ju-Hwa;Pyeon, Su-Jeong;Lee, Dong-Hoon;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.228-229
    • /
    • 2018
  • In the construction industry, we have set goals such as reduction of greenhouse gas emissions and reduction of energy use. In particular, reduction of CO2 emissions in the concrete manufacturing process, reduction of industrial waste and industrial wastes into concrete The zero-emission level of reuse as a resource is under review. On the other hand, the cost of stone is expensive due to small quantity production of domestic stone production in order, it is difficult to carry and construct with heavy material, and it takes long time to construct. In order to solve the shortage of supply and demand of natural stone, various kinds of stone powder, artificial stone made by putting stone texture on the surface of mortar or concrete, fiber reinforced plate, tiles and the like are increasingly used. In this study, the artificial stone using slag and recycled aggregate instead of natural stone was fabricated and the strength characteristics were evaluated for its applicability and feasibility.

  • PDF