• Title/Summary/Keyword: Industrial Processes

Search Result 2,857, Processing Time 0.028 seconds

Structural Optimization of Additive/Subtractive Hybrid Machines (3D적층/절삭 하이브리드가공기의 구조최적화에 관한 연구)

  • Park, Joon-Koo;Kim, Eun-Jung;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.45-50
    • /
    • 2021
  • In the recent fourth industrial revolution, the demand for additive processes has emerged rapidly in many mechanical industries, including the aircraft and automobile industries. Additive processes, in contrast to subtractive processes, can be used to produce complex-shaped products, such as three-dimensional cooling systems and aircraft parts that are difficult to produce using conventional production technologies. However, the limitations of additive processes include nonuniform surface quality, which necessitates the use of post-processing techniques such as subtractive methods and grinding. This has led to the need for hybrid machines that combine additive and subtractive processes. A hybrid machine uses additional additive and subtractive modules, so product deformation, for instance, deflection, is likely to occur. Therefore, structural analysis and design optimization of hybrid machines are essential because these defects cause multiple problems, such as reduced workpiece precision during processing. In this study, structural analysis was conducted before the development of an additive/subtractive hybrid processing machine. In addition, structural optimization was performed to improve the stability of the hybrid machine.

Development of an Investigation Method for Variation Factors of Measurement Processes (측정 프로세스의 변동 요인 조사 방법 개발)

  • Choi, In-Soo;Kang, Chang Wook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.2
    • /
    • pp.72-81
    • /
    • 2016
  • There can be included a variety of uncertainties in all measurement results whether we can perceive or not on the causes. These uncertainties may end up in lowering the reliability of measurement results and also deteriorate the level of quality. For the purpose, we tried to combine the strengths of measurement uncertainty and measurement system analysis together to present a practical flowchart so as to verify those potential variation factors in general measurement processes. As a case study, we did an experiment and gathered data on the length between two holes of an engine cylinder head which is a core part for vehicles with a coordinate measuring machine and estimated nine uncertainty factors of it. Consequently, it was identified that the four primary factors among the nine which were related to the measurement standard, random errors or spread of the repeat measurements, differences between the coefficients of thermal expansion and the environment especially had been the influence around the laboratory. Since it is impossible to analyze the equipment and appraisal variations respectively through the only measurement uncertainty, we have used the measurement system analysis following the flowchart. Showing the result of being just about 0.5% lower for the appraisal variation, and the equipment variation occupied about 7% for the total Gage R&R. Through this research, we have come to a conclusion that much more detail analysis on variation factors can be possible to be identified in measurement processes by using the developed flowchart which is composed of measurement uncertainty and measurement system analysis. Therefore, we expect engineers who are involved in quality and measurements to utilize this developed method.

Generation of Business Process Reference Model Considering Multiple Objectives

  • Yahya, Bernardo Nugroho;Wu, Jei-Zheng;Bae, Hye-Rim
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.3
    • /
    • pp.233-240
    • /
    • 2012
  • The implementation of business process management (BPM) systems in large number of business organizations transforms BPM system into such a level of maturity and tends to collect large repositories of business process (BP) models. This issue encourages BP flexibility that leads to a large number of process variants derived from the same model, but differing in structure, to be stored in the large repositories of BP models. Therefore, the repositories may include thousands of activities and related business objects with variation of requirements and quality of service. It is a common practice to customize processes from reference processes or templates in order to reduce the time and effort required to design and deploy processes on all levels. In order to address redundancy and underutilization problems, a generic process model, called as reference BP, is absolutely necessary to cover the best of process variants. This study aims to develop multiple-objective business process genetic algorithm (MOBPGA) to find a set of non-dominated (Pareto) solutions of business reference model to enhance conventional approach which considered only a single objective on creating BP reference model by using proximity score measurement. A mixed-integer linear program is constructed to evaluate performance of the proposed MOBPGA on small-scale problems by using standard measures for multiple-objective techniques. The results will show the viability of applying MOBPGA in terms of simultaneously maximizing proximity score measurement, minimizing total duration, and total costs of the selected reference model.

A Desirability Function Approach to the Robust Design for Multiple Quality Characteristics (호감도함수 접근법을 이용한 다수품질특성치의 강건설계)

  • Byun, Jai-Hyun;Kim, Kwang-Jae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.2
    • /
    • pp.287-296
    • /
    • 1998
  • We often have multiple quality characteristics to develop, improve and optimize industrial processes and products. It is not easy to find optimal control factor setting when there are multiple quality characteristics, since there will be conflict among the selected levels of the control factors for each individual quality characteristic. In this paper we propose a desirability function approach and devise a scheme which gives a systematic way of solving multiple quality characteristic problems. A numerical example is provided.

  • PDF

The Actinobacterium Corynebacterium glutamicum, an Industrial Workhorse

  • Lee, Joo-Young;Na, Yoon-Ah;Kim, Eungsoo;Lee, Heung-Shick;Kim, Pil
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.5
    • /
    • pp.807-822
    • /
    • 2016
  • Starting as a glutamate producer, Corynebacterium glutamicum has played a variety of roles in the industrial production of amino acids, one of the most important areas of white biotechnology. From shortly after its genome information became available, C. glutamicum has been applied in various production processes for value-added chemicals, fuels, and polymers, as a key organism in industrial biotechnology alongside the surprising progress in systems biology and metabolic engineering. In addition, recent studies have suggested another potential for C. glutamicum as a synthetic biology platform chassis that could move the new era of industrial microbial biotechnology beyond the classical field. Here, we review the recent progress and perspectives in relation to C. glutamicum, which demonstrate it as one of the most promising and valuable workhorses in the field of industrial biotechnology.

A Fault Detection of Cyclic Signals Using Support Vector Machine-Regression (Support Vector Machine-Regression을 이용한 주기신호의 이상탐지)

  • Park, Seung-Hwan;Kim, Jun-Seok;Park, Cheong-Sool;Kim, Sung-Shick;Baek, Jun-Geol
    • Journal of Korean Society for Quality Management
    • /
    • v.38 no.3
    • /
    • pp.354-362
    • /
    • 2010
  • This paper presents a non-linear control chart based on support vector machine regression (SVM-R) to improve the accuracy of fault detection of cyclic signals. The proposed algorithm consists of the following two steps. First, the center line of the control chart is constructed by using SVM-R. Second, we calculate control limits by variances that are estimated by perpendicular and normal line of the center line. For performance evaluation, we apply proposed algorithm to the industrial data of the chemical vapor deposition process which is one of the semiconductor processes. The proposed method has better fault detection performance than other existing method

Evaluation of Blank Heating Processes by Thermal Stress Analysis (열응력 해석에 의한 블랭크 단조품 가열공정 평가)

  • Park, Sang-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4375-4380
    • /
    • 2015
  • This study was performed to evaluate a newly proposed heating process of blank, which was used for Crank throw in the diesel engine, and provide design guidelines of heating processes. Non-linear numerical analyses were done using ANSYS program to investigate temperature and thermal stress distributions of blank during heating processes. The heating process consists of two stages; one is a heating stage with 20 hours, and the other is a holding stage with 12 hours, totaling 32-hour heating time. Based on analysis results, it was found that the temperature difference between the center and the surface of blank increased linearly during the heating stage but decreased gradually during the holding stage of heating processes, while max. equivalent stress, $12.5kg/mm^2$, was found at the center of blank after 10-hour heating time. As the guideline of blank heating process, it was recommended to keep the temperature difference between the center and the surface of blank to be within $150^{\circ}C$ when the environment temperature in furnace reaches $650^{\circ}C$ during a heating stage.

INLINE NEAR INFRARED (NIR) SPECTROSCOPY FOR PROCESS CONTROL IN POLYMER EXTRUSION

  • Rohe, Thomas;Koelle, Sabine;Becker, Wolfgang;Eisenreich, Norbert;Eyerer, Peter
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1082-1082
    • /
    • 2001
  • Extrusion is one of the most important processes in polymer industry. The characterization of the polymer melt during processing will improve this process noticeably, One possibility of characterizing the actual processed polymer melt is the inline near infrared (NIR) spectroscopy, With this method several polymer properties can be observed during processing, e.g. composition, moisture ormechanical properties of the melt. For this purpose probes for transmission and reflection measurements have been developed, withstanding the high temperatures and pressures appearing during extrusion process (tested up to 300$^{\circ}C$ and 10 ㎫). For the transmission system an optical bypass was developed to eliminate disturbing spectral influences and hence increase the long term stability, which is the prerequisite for an industrial application. Measurements in transmission and reflection produced comparable results (or blending processes, where the prediction error was less than 1%. An optimum RMSEP of only 0.24% was found for preprocessed polymer blends measured in transmission on a laboratory extruder. A transflection measurement allowed for the first time the recording of relevant NIR-spectra in the screw area of an extruder. The application to a (PE+PP) blending process delivered promising results. This new measurement mode allows the observation of the ongoing processes within the screw area, which is of maximum Interest for reactive extrusion processes. Due to economic reasons the calibration transfer between different extrusion systems is also of high importance. Investigations on simulated and real-world spectra showed that a calibration transfer is possible. A new method alternatively to the well-known direct standardization procedures was developed, which is based on an automatic data pretreatment. This procedure delivers comparable results for the calibration transfer. Overall this paper presents concepts, components and algorithms for the inline near infrared (NIR) spectroscopy for polymer extrusion, which allows the use of it in a real industrial extrusion process.

  • PDF

EA-Based Tuning of the PID Controller for a CSTR (CSTR용 PID 제어기의 EA 기반 동조)

  • Jin, Gang-Gyoo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.3
    • /
    • pp.330-336
    • /
    • 2014
  • Many industrial processes such as continuous stirred tank reactors(CSTRs), desalination plant, distillation columns, pH neutralization processes and so on exhibit highly nonlinear characteristic and time-varying behavior during operation. The control of such processes has been challenging to control engineers. Hence, a variety of forms of PID controllers and their tuning rules for industrial processes have been developed to guarantee the best performance. In this paper, a scheme that designs the practical PID controller with an anti-windup strategy incorporating with an evolutionary algorithm(EA) is presented for the concentration control of a nonisothermal CSTR. EA is used to tune the parameters of the overall PID control process with anti-windup by minimizing the integral of absolute error(IAE). Simulation works for reference tracking and disturbance rejecting performances and robustness to parameter changes show the feasibility of using the proposed method.